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term. Analysis of this effect suggests that the target patch itself must be included in a description of the visual context.
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Introduction

The perceived lightness of an object depends on the
scene in which it is viewed. Part of this dependence is
simple to understand. Across scenes, the illumination
impinging on an object can change, and this in turn causes
a change in the intensity of light reflected from the object
to the observer. However, even when the intensity of the
reflected light is held constant, context can still affect
perceived lightness. This second class of effect arises
because the visual processing of the light reflected from
an object depends on the entire retinal image. The classic
example of such a context effect is simultaneous contrast,
where the lightness of a test patch varies with its surround
(see Adelson, 2000; Gilchrist, 2006 for discussion). To
understand the perception of object lightness, and more
generally the perception of object color, we must under-
stand such contextual effects.
Ultimately, a successful theory should allow us to

predict perceived lightness from the left and right eye

retinal images. Achieving this goal is challenging because
the number of possible retinal image pairs is astronomical.
Not all may be studied directly. Thus, it is necessary to
specify a subclass of scenes for study and then identify
principles that allow prediction of lightness for all scenes
within the class, on the basis of a feasible number of
measurements. For example, early work considered scenes
whose images consisted of a spatially uniform test region
presented against a spatially uniform background. Within
this class, the question becomes how the luminance of
the test and background interact to yield lightness, and
for this class of scenes, the luminance ratio between test
and background explains much of the variance (Wallach,
1948).
Despite a great deal of research, however, successful

theories of lightness have remained elusive even for
moderately complex scenes, such as those where all
objects are flat and coplanar. Once multiple objects are
introduced in the regions surrounding the test, there is
disagreement about what scenes to study, the nature of the
key empirical phenomena, and the most appropriate
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theoretical approach (Gilchrist, 2006). Some investigators
have split the uniform background surrounding the test
into two parts, so that the test is now bordered by two
rather than one spatially uniform region (Gilchrist, 2006).
Others have split the background in a different way, using,
for example, two annuli, one immediately adjacent to the
test and one remote (Hong & Shevell, 2004; Rudd &
Zemach, 2004). Still others have studied checkerboard-
like patterns, often referred to as Mondrians, in which the
question becomes how to predict the lightness of each
check given its luminance and that of all the others (e.g.,
Arend & Spehar, 1993a, 1993b; Blakeslee & McCourt,
2001; Land & McCann, 1971; Schirillo, 1999). For each
such choice, the hope is both that it will be possible to
discover simplifying regularities and that the regularities
will generalize to allow predictions for more complex
scene classes (see Brainard & Maloney, 2011).
Here, we follow in the tradition that uses checkerboard

scenes as a model system for studying perceived lightness.
We report data from experiments that measure how
varying the checkerboard context of a test patch affects
its perceived lightness. The present experiments extend
previous work in two key ways.
First, we incorporated a pervasive feature of natural

scenes, namely, that the images of such scenes can contain
large (910,000:1) variations in luminance from one
location to another (Heckaman & Fairchild, 2009; Mury,
Pont, & Koenderink, 2009; Xiao, DiCarlo, Catrysse, &
Wandell, 2002). Although classic studies using spatially
uniform surrounds incorporated large luminance changes
(Heinemann, 1955), this manipulation has been little
explored even for spatial patterns as simple as checker-
boards. This is in part because typical CRT displays do
not provide high dynamic range. To conduct the present
studies, we employed a custom high dynamic range
display.
Second, we systematically manipulated the luminance

of checks grouped near to and remote from the central
target patch, similar in spirit to manipulations of local and
remote annuli used in some experiments (Rudd &
Zemach, 2004). These manipulations simulate to a limited
extent the spatial changes in illumination that occur in
natural scenes. We manipulated checkerboard luminance
to vary the degree to which lighter checks are segregated
from darker checks in the checkerboard. Our stimuli,
however, are missing the geometric factors that, in natural
scenes, are associated with a strong impression of different
fields of illumination. These include corners, occlusion
boundaries, penumbrae at cast shadows, edges, and ratio-
invariant X-junctions. Thus, the present studies allow us
to investigate the extent to which photometric manipu-
lation in the absence of such geometric cues affects
perceived lightness. Across the set of experiments, we
used a large range of luminances both for the test patches
whose lightnesses were being judged and for the overall
luminances of the local and remote groups of contextual
checks.

The general characterization of lightness can be split
into two pieces (Wallach, 1976). First, for a standard
context, we need to understand the mapping between
target luminance and perceived lightness. Addressing this
question requires specifying a scale for lightness and
measuring how luminance maps onto this scale for one
single choice of context. Adelson (2000) refers to the
resultant mapping as the lightness transfer function (LTF).
Elsewhere, we describe some initial measurements of
such functions for high dynamic range images without
photometric segregation (Radonjić, Allred, Gilchrist, &
Brainard, 2011). The second part of the characterization is
to describe the mapping between lightness as perceived in
any test context and lightness perceived in the standard
context. Once an LTF is in hand for a single standard
context and the mapping between lightness in any other
context and the standard context is characterized, it is
possible to map the luminance of a test in any context
onto the lightness scale.
In this paper, we address the second aspect of Wallach’s

program by considering how lightness is matched across
contexts. We describe our experimental methods, charac-
terize the main empirical findings, and discuss the broad
implications of the results for models of lightness.

Methods

We were interested in characterizing the effect of
context on perceived lightness. To that end, we asked
observers to make lightness judgments for 24 target
patches of different luminance embedded in each of nine
different checkerboard contexts.

Observers

Observers were 7 adults between the ages of 20 and 35.
Observers CH, MG, OT, PK, and WW were paid
volunteers who were naive to the purposes of the experi-
ment and had little experience in psychophysical obser-
vation. The other observers (SRA and JL) were laboratory
members (one is the first author). All observers had
normal color vision as assessed by the Ishihara Color
Plates and had normal depth perception and normal or
corrected-to-normal visual acuity as assessed by the
Keystone VS-II vision screener.

Apparatus and task

Observers looked through an aperture into a rectangular
enclosure, at the end of which they viewed an achromatic
25 square checkerboard presented on a custom-built high
dynamic range (HDR) display (Figure 1). The checker-
board itself subtended 19.4- and each check subtended
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3.9-. Observers were asked to judge the lightness of the
center check in the checkerboard context (the target patch).
To do so, observers looked into a separately illuminated
matching booth immediately to their left (Figure 1). This
matching chamber (positioned at 89-cm height) contained
a palette of Munsell papers mounted on white matte card-
board (reflectance = 0.84) approximately 61 cm from the
observer. Observers were instructed to choose the Munsell
paper that was most similar in lightness to the target
patch. Each palette paper was 1.1 cm horizontal by 3.0 cm
vertical (1.0- by 2.8- of visual angle). These papers were
matte and ranged from Munsell 2.0 to 9.5 in value steps
of 0.5. Under the halogen illumination, as measured
with a PhotoResearch PR-650 spectral radiometer, the
CIE xy chromaticity of the light reflected from Munsell
palette papers was in the range x = [0.442–0.447] and
y = [0.409–0.411].
We measured the reflectance of each palette paper. This

was accomplished as follows. First, we used the PR-650
spectral radiometer to measure the luminance of the light
reflected from each paper. Denote the reflected luminance
from the ith paper by lp

i. We then measured the luminance
of the white palette background directly adjacent to each
paper. The background measures, which were at regularly
spaced locations, were smoothed with a fourth-order poly-
nomial fit to the measured luminances. Denote the
estimated background luminance adjacent to the ith paper
by lb

i. Finally, we estimated the reflectance of the back-
ground by measuring the luminance of a white reflectance
standard (LabSphere Teflon reflectance standard). This was
done at a subset of the locations where we had measure-
ments of the background luminance. Denote the luminance
of the standard by ls

i. Given these measures, we estimated
the reflectance of the white background, rb, by averaging
the quantity lb

i/ls
i at the locations where we had both

measurements. We then estimated the reflectance of
each palette paper as ri = rb(lp

i/lb
i). The Munsell values,

nominal reflectance of each palette paper obtained from
the Munsell standard (Newhall, Nickerson, & Judd, 1943),
the reflectance that we measured in situ (as described
above), and the measured luminance reflected from each
palette paper to the observer are provided in the
Supplementary materials. The only measured reflectance
that differed reliably from the nominal reflectance was
Munsell 2.0; its measured reflectance was higher than
expected and relatively close to the nominal measurement
of Munsell 2.5. Repeated measures confirmed the reli-
ability of this measurement. Data reported here are based
on the measured rather than nominal reflectance values.
Observers indicated their choice of matching Munsell

paper via a slider response box. By adjusting the slider,
observers could change a numerical value presented on an
LCD flat panel display mounted above the Munsell
palette. The displayed numerical values were in incre-
ments of 0.5 and corresponded to the Munsell values of
the papers. These values were also indicated on the palette
immediately below each paper. In addition, observers
were given two other response options. These were
“darker than 2.0” (displayed when the observer moved
the slider all the way to the left) and “lighter than 9.5”
(displayed when the observer moved the slider all the way
to the right).
Observers were instructed to press a button on the slider

box when the number displayed on the screen represented
the Munsell value of the paper that was most similar in
lightness to the target patch or when they had chosen one
of the out-of-range options. Observers could look back
and forth between the checkerboard display and the
matching palette and were instructed to take as long as
they needed to make their judgments. After observers

Figure 1. Diagram of apparatus components. (A) Schematic of the HDR display. The DLP projects an image onto the LCD display
assembly (consisting of Fresnel lens, diffuser, and the LCD panel itself) through an aperture at the rear of the enclosing box. The box was
lined with black cloth to minimize reflection of stray light. The observer viewed the resulting image through a reduction screen and viewing
aperture at the other end of the enclosing box. The dotted portion of the reduction screen diagram shows the vertical extent of the square
aperture in that screen. Dimensions of the HDR display are provided in the text. (B) Front view of the matching chamber. The chamber
was constructed from plywood and painted a matte gray. Inside, the chamber was 40 cm wide, 40.5 cm high, and 40.5 cm deep. The
matching palette was located at the bottom of the chamber, 22 cm from the edge of the chamber closest to the observer. The chamber
was illuminated by a halogen bulb mounted 27 cm above the bottom of the chamber, on the edge of the chamber to the observers’ right.
Observers indicated their response using a slider on a custom response box (shown below chamber in diagram). This varied the number
on an LCD panel mounted at the back of the viewing chamber. Out-of-range responses were displayed as text on the same monitor.
Observers indicated selection of the desired response by pressing a button on the same box.
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made their response, a new target patch appeared on the
HDR display. The checkerboard surround remained on
display during this transition and was fixed throughout
each block of trials.
Observers ran in 2–3 sessions that lasted between 45

and 60 min. In each session, observers completed blocks
of trials. Each block consisted of 3 repetitions each of
24 different target patches in a single checkerboard context.
Blocks were constructed such that all 24 target patches
were matched before any patch was repeated. A new
random order for the 24 target patches was chosen for each
repetition. Between blocks, the entire display was set to the
minimum luminance while the experimenter initiated a
new block of trials with a different checkerboard context.
During this time, the room lights were turned on and
observers were given the opportunity to take a break. The
main experiment consisted of measurements for 9 different
checkerboard contexts.

Stimuli

The target patch in each checkerboard context took
24 different luminance values, ranging from 0.096 cd/m2

to 211 cd/m2. The smallest value was the minimum
luminance value of the HDR display as configured for
these experiments. The remaining target patches were
selected in equal log steps between 0.24 cd/m2 and the
maximum luminance of the display (211 cd/m2 at the
chosen xy chromaticity of 0.43, 0.40). The full list of
target patch luminances is shown in Table 1. The same
24 target patch values were used in all nine checkerboard
contexts.
A standard checkerboard context was created by taking

24 luminance values between 0.11 cd/m2 and 211 cd/m2

(contrast ratio 1878:1) that were equally spaced in log10
luminance. These 24 luminance values were randomly
assigned to a 5 � 5 checkerboard surrounding the center
target patch. Random draws were taken until neither the
brightest nor the darkest check was immediately adjacent to
the center target patch. The first appropriate configuration
drawn was used as the standard context in all experiments.
The center panel of Figure 2 shows a pictorial representa-
tion of the standard checkerboard, and the luminance
values are reported in Table 2. Although in principle any
context could serve as a standard, using a context that
spanned a large luminance range and checks sampled that
range evenly seemed a reasonable starting point. To create
the remaining 8 checkerboards, we divided the 24 checks
into an inner ring (which consisted of the 8 locations
immediately adjacent to the center target patch) and an
outer ring (which consisted of the 16 locations surrounding
the inner ring). We chose values for low luminance and
high luminance inner and outer rings in the following
fashion. First, the low (high) luminance inner ring values
were the 8 lowest (highest) luminance values in the
standard context (for low ring: minimum luminance =
0.11 cd/m2, maximum luminance = 1.11 cd/m2, contrast

Requested Measured (cd/m2)

0.0000 0.096*
0.0013 0.24
0.0018 0.33
0.0024 0.44
0.0032 0.59
0.0042 0.78
0.0056 1.05
0.0075 1.41
0.0100 1.90
0.0133 2.54
0.0178 3.42
0.0237 4.58
0.0316 6.15
0.0422 8.27
0.0562 11.09
0.0750 14.89
0.1000 19.99
0.1334 26.84
0.1778 36.01
0.2371 48.35
0.3162 64.90
0.5623 116.95
0.7499 157.01
1.0000 210.77

Table 1. Mapping between requested luminance [0–1] and
displayed luminance (in cd/m2) for each of the 24 target patches.
*This minimum luminance is estimated (see Methods section)
because it was below the measurement range of our instruments.

Figure 2. Illustration of the nine checkerboard contexts. Average
luminances of inner ring and outer ring were divided into low,
standard, and high conditions.
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ratio = 9.9:1; for high ring: minimum luminance =
21.3 cd/m2, maximum luminance = 211 cd/m2, contrast
ratio = 9.9:1). To create the luminance values for the low
(high) luminance outer ring, we took the minimum and
maximum values of the low (high) luminance inner rings,
and the remaining luminance values were placed at equal
log steps between the minimum and maximum. The
remaining 8 checkerboards were the various permutations
of these low, standard, and high luminance inner and outer
rings (e.g., low–inner, low–outer checkerboard; low–inner,
standard–outer checkerboard; low–inner, high–outer check-
erboard; mutatis mutandis). Table 3 shows the minimum
and maximum luminances and contrast ratio for each
checkerboard. Spatial locations of the low and high inner
and outer rings in each checkerboard preserved the rank
order of luminance values in the standard context.
Luminance values for all nine checkerboard contexts can
be found at http://color.psych.upenn.edu/supplements/
hdrlocalremote. This method of creating contexts has sev-
eral implications. First, the contrast between the brightest
and darkest checks varies between contexts. Both the low–
low and high–high luminance checkerboards have a lower
contrast than the standard context (see Table 3). Second,
even within one spatial ring, there is not a single multi-
plicative factor that scales the luminances in the standard
checkerboard to those in the test checkerboards. This lack
of contrast invariance means that the test checkerboards
cannot be obviously characterized as differing from the
standard checkerboard by a single (or double) change in a
simulated illuminant.

Display system and stimulus characterization

Grayscale checkerboard images were presented on a
custom computer-controlled high dynamic range (HDR)
display (see Figure 1). The design of the HDR display
was adopted from Seetzen et al. (2004). The output from a
DLP video projector (Panasonic #PT-D7600U) was
projected onto a 19W LCD display panel (ViewSonic),
through a Fresnel lens and diffuser placed directly against
the backside of the panel (where its backlight would
normally go). The projector was equipped with a short-
throw lens (Panasonic DLP Projection Fixed Lens SXGA
0.8/XGA 1.0); the front edge of the lens was 20 cm from
the LCD panel assembly. Because the LCD panel is a
transmissive display, it provides a multiplicative attenu-
ation of the projector image, resulting in an overall
dynamic range that is the product of the native dynamic
ranges of the projector and panel. Both display devices
were driven at a pixel resolution of 1280 by 1024 and at a
refresh rate of 60 Hz by a dual-port video card (NVIDIA
GeForce GT 120). The host computer was an Apple
Macintosh G5.
The displays were arranged so that the LCD panel was

enclosed in a box that prevented stray light within the
experimental room from reaching the front of the panel
and reflecting back to the observer. Visible surfaces within
this box were lined with light absorbing black cloth. The
observer viewed the LCD panel monocularly from a
distance of 73 cm through a circular aperture 6.1 cm in
diameter at the end of the enclosing box. The observer’s
head was stabilized with a chin rest, which could be adjusted
so that the eye was centered in the circular aperture.
To display calibrated high-resolution images on the

HDR display, it is necessary both to align the projector
image with the LCD panel and to map desired stimulus
values to appropriate RGB input settings for the two video
cards. These tasks were completed using custom software
developed in the laboratory, following general methods
outlined by Seetzen et al. (2004). The experimental software
consisted primarily of MATLAB routines. To control the
display, we also relied on routines from the Psychtoolbox

21.26 0.22 15.32 7.95 210.77
40.94 2.98 4.13 78.85 0.16
11.04 56.82 Target 1.54 0.30
0.58 0.42 2.14 5.73 109.43
0.82 29.50 151.87 0.11 1.11

Table 2. Luminance (in cd/m2) values for the standard checker-
board context. Each value indicates the luminance of one check.
The center check is the target patch, which varied on each trial.

Inner min Inner max Inner CR Outer min Outer max Outer CR Overall CR

Low–low 0.11 1.11 9.92 0.11 1.11 9.92 9.92
Low–standard 0.11 1.11 9.92 0.11 210.77 1878 1878
Low–high 0.11 1.11 9.92 21.26 210.77 9.92 1878
Standard–low 0.42 78.85 189.36 0.11 1.11 9.92 702.4
Standard 0.42 78.85 189.36 0.11 210.77 1878 1878
Standard–high 0.42 78.85 189.36 21.26 210.77 9.92 506.1
High–low 21.26 210.77 9.92 0.11 1.11 9.92 1878
High–standard 21.26 210.77 9.92 0.11 210.77 1878 1878
High–high 21.26 210.77 9.92 21.26 210.77 9.92 9.92

Table 3. Minimum and maximum luminance values (in cd/m2) and contrast ratios for the inner and outer rings of all 9 checkerboard
contexts. The left column denotes the luminance profile (low, standard, or high) of the inner (first word) and outer (second word) rings. The
contrast ratio (CR) was calculated by dividing the maximum luminance of the ring by the minimum luminance of the ring.
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(Brainard, 1997), MGL toolbox (http://gru.brain.riken.jp/
mgl), and custom C routines that were called from
MATLAB and that accessed the OpenGL API directly.
To align the two displays, an observer adjusted a 20 by

20 grid presented by the projector so that it aligned with a
corresponding fixed grid displayed on the LCD panel. The
alignment coordinates were used to create a warping map
for the images displayed on the projector so that they were
in spatial register with the images on the LCD panel. The
warping was performed at the frame rate by processing on
the video card. Because the Fresnel lens/diffuser/LCD
panel onto which the image was projected had a significant
thickness, this alignment was specific to the observer’s eye
position. The use of an aperture in the display enclosure
ensured consistency of this position across sessions and
observers. Accidental movement of the Fresnel lens/
diffuser/LCD panel could cause the projector and LCD
displays to become misaligned. Experimenters periodi-
cally inspected alignment of the experimental stimuli
before data collection and repeated the alignment proce-
dure as necessary.
We used the PR-650 spectral radiometer to characterize

the properties of the projector and LCD panel separately.
This was done in situ, with the radiometer placed at the
observer’s eye position. First, we characterized the projector,
which we used as a grayscale device so that its RGB values
were always set with R = G = B. We set the RGB input
values of the LCD panel to their maximum level (corre-
sponding to maximum transmission through the panel) and
measured the relation between the R = G = B values to the
projector and luminance output for a series of 30 input
values. We then splined these to produce a full gamma
curve for the projector. Second, we set all projector pixels
to their maximum input values (full light output) and
measured separately the gamma curves of the R, G, and
B channels of the LCD panel, as well as the transmitted
spectrum for each channel. For any desired display
luminance and chromaticity, the characterization data were
used to compute an R = G = B value for the projector
and R, G, B values for the LCD panel that produced the
desired output. The algorithm followed that of Seetzen et al.
For any given desired luminance and chromaticity, we first
used the calibration data for the LCD panel, obtained when
the projector was set to maximum output, to determine the
linear proportion of each red, green, and blue primary
required to produce the desired output. We then took the
maximum of these three values and found the square root
of this maximum. The projector R = G = B input value was
set to produce this proportion of maximum luminance. We
then compensated for this decrease by appropriate choice
of LCD panel R, G, and B input values. The procedure
apportions the luminance attenuation at each pixel across
the projector and LCD panel.
The HDR display is a new device in our laboratory, and

more generally such displays are only recently coming
into use in visual psychophysics. Thus, we are still gaining
experience with precise stimulus control for such displays.

Here, we note some limitations in the precision to which
our procedures characterized the stimuli. Development of
improved stimulus characterization and control procedures
is ongoing in the laboratory. A key limitation is that the
lowest luminances displayable by the device are below the
minimum luminance that could be reliably measured by
the radiometer. Visual inspection, however, revealed
discriminable differences between these low luminance
stimuli. To estimate the lowest luminances, we measured
the luminance of the center patch on the checkerboard for
97 test values that spanned the requested stimulus range
in the experiments. A line (in log–log space: slope = 1.02;
y-intercept = 2.32) provided an excellent fit between
measured luminance values and input luminance values
across the range of test stimuli that we could measure. The
full list of 97 input luminance values and measured
luminance and chromaticity values are available in the
Supplementary materials. Checkerboard and target lumi-
nances reported here are those obtained from the fit to these
data, with luminance values below the instrument’s mea-
surement range obtained by extrapolation. We somewhat
arbitrarily assigned the luminance corresponding to nominal
luminance of 0 to be 0.096 cd/m2. This was obtained by
subtracting the difference between the lowest two extrapo-
lated values from the lowest extrapolated value. We thus
view the data obtained for the low end of the luminance
range as less precise than that for higher luminances.
A second limitation is that we calibrated the central patch

of the display only; there is likely to be some location-
to-location variation in the stimuli at the other display
locations. Values reported for checkerboard luminances
are those obtained for the center location with the same
input settings.
Finally, direct measurements revealed some variation in

target square chromaticity from the desired target values.
Across test luminance range, x chromaticities were in the
range [0.43–045] and y chromaticities were in the range
[0.38–0.40]. The measured variability was more pro-
nounced at lower test luminances. The chromaticity
variations were not visually salient; the stimuli appeared
to vary primarily in luminance.

Data analysis

The goal of this paper is to understand how context
affects the map between luminance and perceived light-
ness. To do so, we computed context transfer functions
(CTFs) by analyzing the data to establish target patch
luminances that were matched to common palette papers.
For each target patch, observers indicated the best
matching Munsell paper. The Munsell palette papers,
which remained unchanged as checkerboard contexts and
target patches varied, provided the reference for computing
CTFs. If observers matched two target patches in different
checkerboard contexts [Lx, Ly] to the same Munsell paper
(where the subscript indicates checkerboard context), then
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we took those luminance values to be perceptually
equivalent. That is, Lx Ê Ly, where Ê denotes perceptual
equivalence.
To compute CTFs for human observers, we calculated

perceptually equivalent luminance values for each Mun-
sell paper in each context. We write

MPa Ê

XN1

i¼1

log10ðLi1Þ
N1

0
BBB@

1
CCCAÊ

XN2

i¼1

log10ðLi2Þ
N2

0
BBB@

1
CCCAI

Ê

XN9

i¼2

log10ðLi9Þ
N9

0
BBB@

1
CCCA; ð1Þ

whereMPa represents a given Munsell paper (and a ranges
from 2.0 to 9.5) and Lx

i represent the test luminances that
were matched to that Munsell paper (MPa). The value of
Nx varies with both Munsell paper and context and
represents the total number of test luminances that were
matched to that Munsell paper.
Equation 1 gives us estimates of perceptually equivalent

luminances across contexts. If there existed a Munsell
paper to which no luminance value was mapped by an
observer in a given context, that observer’s data point was
excluded from the average calculation. For each context,
we discarded data for Munsell papers where fewer than
half of the observers matched any stimulus to that paper.
The data are tabulated in the Supplementary materials.
In principle, one can describe the CTF between any two

contexts; here, we always use the average of all observers
in the standard checkerboard context as a reference so that
the data set consists of the CTFs between the standard
context and each of the 8 other contexts.
Observers could also respond “darker than 2.0” or

“lighter than 9.5.” Because these judgments did not
correspond to a palette paper, they were dropped from
further analysis. Of all 504 judgments across 7 observers
in the standard checkerboard context, 50 were “darker
than 2.0” and 14 were “lighter than 9.5.” The number of
out-of-range judgments in other contexts can be found in
the Supplementary materials.
We fit the CTFs using two models. Both models were

derived using the classic framework that perceptual
matches occur when two stimuli produce the same
response in an internal “lightness” mechanism (Fechner,
1966; Heinemann, 1961; Hillis & Brainard, 2007a,
2007b). We assume that the relation between target
luminance and mechanism response varies with context.
For the first model, we assumed that the only adaptation
parameters controlling the variation are multiplicative gain
and subtractive offset. A wide variety of experimental
evidence provides support for both multiplicative and

subtractive adaptation (Chubb, Sperling, & Solomon, 1989;
Hood & Finkelstein, 1986). Note that in their simplest
forms, models that postulate Weber contrast coding of the
stimulus followed by multiplicative contrast gain control
(Chubb et al., 1989; D’Zmura, 1999) or divisive contrast
normalization (Blakeslee & McCourt, 2004; Heeger, 1992)
are algebraically equivalent to models that postulate a
combination of multiplicative and subtractive adaptation. In
addition, Gilchrist’s (2006) notions of anchoring combined
with scaling and Adelson’s (2000) elaboration of an affine
atmospheric transfer function represent models that incor-
porate two adaptation parameters.
For the first model (gain–offset), the mechanism

response (y) in any context is given by

y ¼ f ½g � ðLjoÞ�; ð2Þ

where g is a multiplicative gain parameter, o is a
subtractive offset, and f() is a fixed and invertible non-
linear function. Thus, the model yields

f ðgst � ðLstjostÞÞ ¼ f ðgx � ðLxjoxÞÞ; ð3Þ

where Lst and Lx are perceptually equated luminances
between the standard context and context x. Since f() is
invertible,

gst � ðLstjostÞ ¼ gx � ðLxjoxÞ: ð4Þ

This provides a predicted relation between the luminances
of the stimuli that match in lightness across contexts:

Lx ¼ g � ðLstj l0Þ; ð5Þ

where g = gst
gx
and l0 = ost j

ox
g . Using numerical parameter

search (Matlab fmincon), we solved for the values of g
and l0 that minimized the sum squared error between the
observed and predicted log10Lx.
We found that the fits produced by the first model

deviated systematically from the data (see Figure 3 for
model fits). For this reason, we developed a second model
(gain–offset–exponent) with additional adaptation param-
eters. To do so, we used the specific form of the Naka–
Rushton function for f():

f ðyÞ ¼ Rmax � ½yn=ðyn þ yn0Þ�: ð6Þ

We fixed Rmax = 1 and y0 = 1 and allowed the exponent n
to vary with context. This exponent controls the steepness
of the sigmoidal function described by Equation 6. Under
this model, we predict the luminance of stimuli that match
in lightness across context as

Lx ¼ fj1
x ð f stððgst � ðLstjl0stÞÞÞ=gx þ l0x : ð7Þ
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We set the exponent of fst as nst = 3 and found gst and l0st
so that the luminances of the standard context were spread
across the non-saturating regime of fst. We then used
parameter search to find the parameters gx, l0x, and nx that
provided the best fit to each CTF.

Results

The measured context transfer functions (CTFs) for our
eight test contexts, relative to the standard context, are
shown in Figure 3. Each plotted point shows data for one
palette paper. The average luminance of all the target

patches matched to that palette paper in the test checker-
board context is shown on the x-axis, while the y-axis
represents the average luminance of all the target patches
matched to that palette paper in the standard checkerboard
context. The extent to which each plotted point deviates
from the diagonal indicates the magnitude of the effect of
changing from standard to test context.
The CTFs have several salient features. First, in cases

where the luminance of the checkerboard context unam-
biguously decreased relative to the standard context (top
left, top right, and bottom left panels of Figure 3, red
lines), target patches appeared lighter (red points shifted
leftward from the diagonal). Conversely, when the lumi-
nance of the checkerboard context unambiguously
increased (top left, top right, and bottom left panels of

Figure 3. Effect of context on lightness. Each data point represents the average of the target luminance values matched to a different
Munsell paper in a test checkerboard context (x-axis) and the standard context (y-axis). The top left panel shows data for the low inner,
standard outer (red/circles) and high inner, standard outer (cyan/squares) test contexts; the top right panel shows data for the standard
inner, low outer (red circles) and standard inner, high outer (cyan squares) contexts; the bottom left panel shows data for the low inner, low
outer (red/circles) and high inner, high outer (cyan/squares) test contexts; the bottom right panel shows data for the low inner, high outer
(red/circles) and high inner, low outer (cyan/squares) contexts. Error bars are SEM across observers. Lines are fits to the gain–offset
model (black, dashed) and the gain–offset–exponent model (colored, solid). The standard context is defined as the average match across
all observers in the standard condition.
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Figure 3, blue lines), target patches appeared darker.
Qualitatively, both of these effects are consistent with the
idea that perceived lightness is determined by a comparison
of the target’s luminance to some aggregate of the luminance
surrounding the target. In addition, if these aggregate
changes in surround luminance are interpreted as illuminant
changes of the same sign, then both effects are qualitatively
consistent with lightness constancy. Note also that both
effects can be quite large. For example, going from the
darkest to the brightest context changed the average
luminance matched to Munsell 5.0 (a mid-gray) by a factor
of 23 (average match: 0.87 cd/m2 in low–low, 20 cd/m2 in
high–high). For one observer, CH, a target patch perceived
as white (Munsell 9.5) in one context (2.54 cd/m2, low–
low) was perceived as black (Munsell 2.0) in the brightest
context (high–high). Use of an HDR display provides the
capability of measuring lightness across a large luminance
range, without substantial floor or ceiling effects.
Second, and also unsurprisingly, manipulating the

luminance of the inner ring alone appears to have a greater
effect on the CTF than does manipulating the luminance
of the outer ring alone. For each context change, the locus
of the points in the CTF provides a measure of the effect of
context, and in the top left panel of Figure 3, the CTFs are
shifted more than in the top right panel of Figure 3. We do
note that our comparison of inner and outer ring effects is
specific to the particular choice of luminance distribution
in the inner and outer rings.
Third, changing both rings together has a greater effect

than either alone (bottom left panel of Figure 3) and it
appears that for our stimuli this effect is larger for
decreasing luminance (red line).
Fourth, in addition to the magnitude of the contextual

effect changing between contexts, the shape of the CTF
changes between contexts. For example, when only the
outer ring is changed, the CTF is fairly linear (top right

panel of Figure 3), but when the luminance of both rings
is changed, the CTFs are curved (bottom left panel of
Figure 3).
To quantify these four effects, and to understand these

broad features of the data more completely, we asked
whether the locus of the points has an interpretable
parametric form. The thin dashed lines in Figure 3 show
fits of our first model, one that incorporates both multi-
plicative and subtractive adaptation (see Methods section).
This model captures overall shift of the data relative
to the diagonal, although it clearly fails in detail. This
overall shift in the model fits is driven primarily by
the multiplicative gain parameter. Indeed, if the subtrac-
tive offset term were forced to be zero, the fits would
be lines with unit slope and the gain parameters would
allow shifts of these lines to pass in aggregate through
each CTF.
Although the gain–offset model captures the overall

trends in the data, it fails in detail. In particular, most of
the CTFs show significant curvature that is not fit by the
model. This curvature is most noticeable for the low–low
and high–high contexts (bottom left panel of Figure 3).
The colored solid lines in the figure show the fit of our
secondmodel, where the exponent of the underlying sigmoid
is allowed to vary with context. Allowing this variation
captures the curvature of the CTFs and provides a good fit to
the data. We have also found that the same parametric form
can account for measurements of perceived lightness in
high dynamic range contexts that do not segregate inner
and outer rings (Radonjić et al., 2011). Table 4 provides
the fitted model parameters for each context.
Because the model fits the data, we can summarize the

effect of context on lightness by characterizing how
context affects the model parameters. For this purpose,
we have found it most intuitive to reparameterize the
model. Rather than examining the gain, offset, and

Log10(g) l0 Exp Log10(black point) Log10(white point) Log10(gray point)

Low–low j1.00 5.90 1.78 j0.66 1.50 j0.02
Low–standard j0.36 2.79 2.19 j0.65 1.95 0.58
Low–high j0.21 1.88 2.41 j0.57 2.02 0.74
Standard–low j0.16 1.09 2.65 j0.45 1.99 0.81
Standard 0* 0* 3* j0.20 2.07 0.98
Standard–high 0.17 j1.46 3.38 j0.19 2.16 1.14
High–low 0.33 j3.25 3.96 j0.08 2.22 1.28
High–standard 0.40 j4.81 4.57 0.04 2.22 1.34
High–high 0.55 j7.72 5.90 0.12 2.23 1.45

Table 4. Best fit parameters of the multiplicative gain–offset–exponent model of the CTFs for each checkerboard context. Values are
parameters fit to the average data. The left column denotes the luminance profile (low, standard, or high) of the inner (first word) and outer
(second word) rings. Column values are given as follows: (2) log of the gain parameter; (3) the subtractive offset parameter; (4) the
exponent parameter; (5) the log10 of the black point, calculated by evaluating the model at the black point (the average luminance
matched to 2.5) in the standard context (0.64 cd/m2); (6) the log10 of the white point, calculated by evaluating the model at the white point
(the average luminance matched to 9.0) in the standard context (117 cd/m2); (7) the log10 of the gray point, calculated by evaluating the
model at the gray point (the average luminance matched to 5.5) in the standard context (9.49 cd/m2). Notes: *Indicates fixed values in the
reference condition.
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exponent, which do not directly and explicitly describe the
measured CTFs, we examine the model predictions for
what we refer to as the black, white, and gray points. In
concept, these are the luminance values that appear black,
white, and gray in each context; here, they are defined
operationally as the predictions for luminance in each test
context that match luminances of 0.64 cd/m2, 117 cd/m2,
and 9.49 cd/m2 in the standard context. These luminances
correspond to the matches made in the standard context to
the Munsell 2.5, 9.0, and 5.5 palette papers. Because the
data are well fit by a 3-parameter model, most three-point
reparameterizations should be equivalent; we verified that
specification of the black, white, and gray points is
sufficient to recover the model parameters for each
context.
Checkerboard context affects the black point, as shown

in Figure 4. Decreasing the luminance of the context
decreases the black point (left bars, left panel), and
increasing the luminance of the context increases the
black point (right bars, right panel). More generally, the
black point varies systematically from left to right in
Figure 4, indicating a regular dependence on the overall
luminance of both the inner and outer checkerboard rings.
As one might expect, the inner ring has a stronger effect
than the outer ring. For example, decreasing (increasing)
the inner ring changed the black point by an average
of 0.42 (0.66) cd/m2, while decreasing (increasing) the
outer ring changed the black point by an average of
0.24 (0.15) cd/m2. Note also that the effect of context on
the black point is not due solely to the lowest contextual
luminance. As shown in Figure 5, in all but two of the
contexts (standard inner–high outer and high inner–high
outer) the lowest luminance in the overall checkerboard
context is the same (0.11 cd/m2).

Figure 4. Effect of checkerboard context on black point (left panel), white point (center panel), and gray point (right panel). Black points
(taken as model predictions for match to N 2.5), white points (taken as model predictions for match to N 9), and gray points (taken as
model predictions for match to N 5.5) were grouped by inner ring conditions for each of our nine conditions. The values shown were
obtained by averaging the values (expressed as log10 cd/m

2) obtained from fits to individual observer data; error bars show standard error
of the mean.

Figure 5. Effect of checkerboard context on the black point and
white point. Each solid line begins at the black point and ends at
the white point for that context. Black and white points are values
from Table 4. Note that since these values are computed from
the parameters fit to the average data, they may differ slightly from
the values in the left and center panels of Figure 4, which are the
average of values computed from parameters fit to individual
subjects’ data. The dashed lines show the luminance range of the
checkerboard context (inner ring above the solid line; outer ring
below the solid line). The vertical solid black lines indicate the
minimum (left solid line) and maximum (right solid line) target
luminances.
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The increase in the black point could arise in two
different ways. The same 24 target patches were used in
every context and observers were given the option of
reporting darker than 2.0. An increase in the black point
could occur because observers are calling more low
luminance stimuli “darker than 2.0,” thus excluding them
from contributing to the average luminance matched to
palette papers, or because observers are matching pro-
gressively more stimuli to the low end of the palette. Both
effects occur in our data. The total number of judgments
that are out of range in each context (out of 504) varies
from 10 in the low–low context to 91 in the high–high
context. The total number of 2.0 and 2.5 judgments in
each context (again out of 504) varies from 16 in the low–
low condition to 93 in the high–high condition.
Checkerboard context also affects the white point, as

shown in the center panel of Figure 4. Decreasing the
luminance of the context decreases the white point (left
bars, center panel), and increasing the luminance of the
context increases the white point (right bars, center panel).
As with the black point, the inner ring has a greater effect
than the outer ring, although this effect is not as
pronounced as for the black point. For our contexts, the
white point is not determined solely by the highest
contextual luminance. All but two of our contexts have
the same highest luminance (Figure 5), and the white point
varies across these contexts. At the same time, we note
that the deviations from the “highest luminance appears
white” anchoring rule for these seven contexts are modest,
about 0.3 log units.
To examine in more detail the effect of context on the

black and white points, we tested whether the effects of
inner and outer rings were additive. To do so, we conducted
3-way ANOVAs on both the black and white points. Both
inner and outer rings have a significant additive effect on
both the black and white points, but there was not a
significant interaction (black point, Table 5; white point,
Table 6). In other words, the effect on black and white
points of changing the outer ring does not depend on the
luminance profile of the inner ring, and vice versa. For the
white point, this result is qualitatively consistent with

Gilchrist’s (2006) notion that the visual system segments
the image into “frameworks” and that the white point
within each framework represents a weighted combination
of influence between frameworks.
The gray points also vary systematically with context. In

addition, the variation of the gray points is not described as
the result of additive effects of inner and outer rings
(ANOVA, Table 7). Consideration of Figures 3 and 4
suggests that the interaction may be driven by the data
from the low–low and high–high conditions: In Figure 3,
this is indicated by the increased curvature for these
conditions and in Figure 4 by the fact that the gray point is
lower than expected for low–low condition.
The low–low and high–high checkerboards differ from

the other contexts in several different ways. First, the
overall range of luminance in the context is much lower
(9.92:1 in both) than in any other checkerboard. Because
of this, and because we have the same 24 target patches in
every context, this means that for these two conditions, a
significant portion of our target patches are out of the range
of the checkerboard context. In the low–low checkerboard,
17 of the 24 target patches were brighter than the brightest
square in the checkerboard; in the high–high checkerboard,
17 of the 24 target patches were of lower luminance than
the lowest luminance in the checkerboard.

Source SumSq df MeanSq F p

Observer 3.20 6 0.53 32.45 G0.001
Inner 4.76 2 2.38 144.67 G0.001
Outer 0.63 2 0.32 19.17 G0.001
Interaction
(inner outer)

0.06 4 0.02 0.97 0.43 (n.s.)

Error 0.79 48 0.02
Total 9.45 62

Table 5. ANOVA for black points. The table shows the results of a
3-way ANOVA on the individual observer black points. Observer
was coded as a random effects variable, while inner and outer
rings were coded as fixed effects. The ANOVA modeled all main
effects and the inner by outer interaction.

Source SumSq df MeanSq F p

Observer 5.45 6 0.91 20.91 G0.001
Inner 1.81 2 0.90 20.79 G0.001
Outer 0.47 2 0.23 5.38 G0.01
Interaction
(inner outer)

0.36 4 0.09 2.10 0.10 (n.s.)

Error 2.09 48 0.04
Total 10.18 62

Table 6. ANOVA for white points. The table shows the results of a
3-way ANOVA on the individual observer white points. Observer
was coded as a random effects variable, while inner and outer
rings were coded as fixed effects. The ANOVA modeled all main
effects and the inner by outer interaction.

Source SumSq df MeanSq F p

Observer 2.85 6 0.47 10.63 G0.001
Inner 9.65 2 4.82 108.02 G0.001
Outer 1.95 2 0.98 21.84 G0.001
Interaction
(inner outer)

0.83 4 0.21 4.62 G0.005

Error 2.14 48 0.04
Total 17.42 62

Table 7. ANOVA for gray points. The table shows the results of a
3-way ANOVA on the individual observer gray points. Observer
was coded as a random effects variable, while inner and outer
rings were coded as fixed effects. The ANOVA modeled all main
effects and the inner by outer interaction.
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To investigate whether the test stimuli that were outside
the range of the checkerboard context exerted an effect
on the appearance of target patches that were within the
range of the checkerboard context, we performed a control
experiment with 5 observers where we varied the range and
values of the target patches presented in the low–low and
high–high checkerboard contexts and fit the model to the
resulting CTFs. In Condition 1, the five observers made
matches for the same set of target patches as in the main
experiment. In Condition 2, we used the same data set as in
Condition 1, but we computed the CTF using only the
subset of target patches that fell within the luminance range
of the context (7/24 target patches). In Condition 3, 24/24
target patches were within the range of the checkerboard
context. Finally, in Condition 4 (low–low context only),
9/24 target patches were within the range of the checker-
board context. In Figure 6 (left panel), we compare the
CTFs for the different sets of target patches presented in
the low–low context. If presenting out-of-range target
patches within an experimental session affected the light-
ness of those target patches that were within the range of
the checkerboard context, then the data from Conditions
2–4 (left panel) would differ from each other; however,
the green, blue, and yellow data points are very similar to
each other in the left panel of Figure 6. The right panel of
Figure 6 shows that the same broad trend is true for the

high–high context, that is, presenting target patches outside
the range of the checkerboard context in an experimental
session does not affect judgments of target patches made
within the range of the checkerboard context.
Although the data in Figure 6 show that judgments of

in-range target patches are affected very little by within-
session presentation of target patches outside of the
luminance range of the checkerboard context, they also
show that extrapolations of appearance for target patches
outside of the range are very inaccurate. For comparison,
the CTF calculated with the full target patch range for the
control observers is shown in Figure 6. The white point
extrapolated from the within-range CTF for the low–low
condition is 1.30 cd/m2, compared to 11.3 cd/m2 for the
CTF from the full target patch range. Similarly, the black
point extrapolated from the within-range CTF for the high–
high condition is 1.83 cd/m2, compared to 25.9 cd/m2 for
the CTF from the full target patch range.

Discussion

A complete model of the perception of surface lightness
would allow prediction of the lightness of any image
region, given the luminance of each location in the image.

Figure 6. Effect of target stimulus range on CTF. For 5 observers, we plot the CTFs for 4 sets of target patches in the low–low
checkerboard context (left panel) and 3 sets of target patches in the high–high context (right panel): (1) the standard target patches from
the main experiment (both panels, red data points); (2) the subset of target patches from Condition 1 that fell within the luminance range of
the checkerboard context (both panels, blue points, 7/24 target patches); (3) a low range set of 24 target patches that fell within the
luminance range of the checkerboard context (both panels, yellow points). For the low–low checkerboard, the 24 target patches were
equal log steps between 0.11 cd/m2 and 1.11 cd/m2 luminance; for the high–high checkerboard context, the 24 target patches were equal
log steps between 21.2 cd/m2 and 211 cd/m2; and (4) for the low–low checkerboard context (left panel), a medium luminance set (green
data points) consisted of 24 patches in equal log steps between 0.18 and 20.0 cd/m2, from which we plot the 9 target patches within the
luminance range of the checkerboard. Error bars are SEM. Yellow lines represent the best fit gain–offset–exponent model calculated with
target stimuli from all conditions that were within checkerboard luminance range (yellow, green, and blue data points in the left panel and
yellow and blue data points in the right panel). Red lines are the best fit gain–offset–exponent model for the standard target patches (red
points in both panels). Differences between the CTFs calculated with the standard target stimuli (red lines) and the low–low and high–high
CTFs in Figure 3 likely reflect differences between observers in the main and control experiments.
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We are currently far from that goal, particularly for images
that are typical of natural viewing. The present results serve
to provide one step toward a complete model, in that they
characterize lightness for simple images that contain some
salient features of natural images. In particular, our images
exhibit a high range of luminance variation, and across
images the spatial grouping of this variation was varied by
the introduction of photometric variation between the inner
and outer checkerboard rings. We close by summarizing
our data and emphasizing key features of the results.
We measured the effect of context on the mapping

between luminance and lightness. To do so, we asked
observers to match the luminance of a test patch embedded
in a checkerboard to a standard series of Munsell papers.
The Munsell papers served as a convenient place holder to
infer perceptually equivalent luminances across contexts;
we assumed that when two different luminance values were
matched to the same Munsell paper, then to within the
resolution of the Munsell papers, those two luminance
values appeared the same. In principle, we could have used
any matching palette that spanned the appropriate reflec-
tance range, since rather than being viewed as meaningful
in itself the palette was used only to link the appearance
of luminance values between contexts. As long as the
perception of lightness in the palette is monotonic with
perception of lightness in the checkerboards, the derived
CTFs will be invariant to palette choice. Although this
assumption seems reasonably secure, we do note that recent
research (Logvinenko & Maloney, 2006) suggests that
under some circumstances, two perceptual dimensions are
required to capture the full richness of the phenomenology
of lightness. To the extent that a second dimension is
required, the CTFs may fail to capture the full effect of
context on perceived lightness.
In broad strokes, several features of our results are

consistent with previous work. First, the CTFs shift up
from the identity line when overall context luminance is
increased and down from the identity line when overall
context luminance is decreased. It would be surprising if
this were not the case: A long tradition of lightness research
suggests that changing the luminance surrounding a target
patch causes a change of opposite sign in perceived
lightness. Second, context changes near the target patch
have a larger effect than context changes further from the
target patch. This was also expected and is consistent with
many previous studies in lightness and color demonstrating
that the size of contextual effects is dependent on the
proximity of contextual changes (Gilchrist, 2006; Hong &
Shevell, 2004; Rudd & Zemach, 2004).
Other features of our data are novel. First is the manner

in which the shape of the CTFs varies with context. Early
proposals about how context affects lightness focused on
the notion that lightness is computed via a ratio to some
reference luminance (Land, 1986; Wallach, 1948, see
Brainard & Wandell, 1986) or as a fixed function of
contrast. These models predict that the CTFs will plot as
lines of slope 1 in the type of log–log representation we

employ and are clearly contradicted by the data. Devia-
tions from a line of unit slope are also predicted by the
parametric form required to account for a variety of visual
phenomena, however. These include brightness induction
(Spehar, Debonet, & Zaidi, 1996), chromatic induction
(Jameson & Hurvich, 1972), subtractive adaptation in
sensitivity regulation (Adelson, 1982; Geisler, 1978),
background discounting (Shevell, 1978; Walraven, 1976),
contrast adaptation (Chubb et al., 1989), and scale
normalization (Gilchrist, 2006). Our gain–offset model
implements the core feature of these models as they apply
to our stimulus configuration. Indeed, the gain–offset
model may be thought of as incorporating what are often
referred to as first-site (multiplicative gain control) and
second-site (subtractive) adaptation. Although the gain–
offset model captures the broad trends of the data,
however, it clearly misses in detail (Figure 3). To account
for our data, we must also allow an additional parameter
to vary with context. In particular, we were able to fit the
measured CTFs well with our gain–offset–exponent model
(Figure 3). As discussed in much more detail elsewhere,
the response functions inferred from our model provide a
representation of context effects that is in the same form
as typical neural measurements (Radonjić et al., 2011), so
that a potential use of the model is to infer how we might
expect neural mechanisms subserving lightness perception
to adapt to different visual contexts.
Our ability to reject contrast-coding and gain–offset

models derives from the fact that we varied test luminance
over a large range, providing us with a much fuller picture
of how lightness varies with luminance across contexts
than can be obtained when the test stimuli are varied over
a more restricted range. In his classic study, for example,
Wallach varied test luminance over a range of about 10:1,
much smaller than we employ here.More generally, we have
not found many studies in the literature that study lightness
parametrically across a large range of test luminances (but
see Bartleson & Breneman, 1967; McCann, 2006.)
The CTFs also indicate that even without the geometric

cues to scene segregation that occur under natural viewing
conditions, observers’ lightness matches are consistent
with the visual system treating the photometric variation in
checkerboard context as spatial variation in the illumina-
tion. For example, the changes in observers’ lightness
between the standard and high–low checkerboard contexts
are qualitatively consistent with the direction of the effect
one would expect for the performance of a lightness
constant visual system that treated the stimuli as a set of
surfaces whose central region was illuminated by a small
spotlight (bottom right panel in Figure 2). However,
inferences about how the visual system parsed the stimuli
into separately illuminated regions must remain specula-
tive, since our stimuli were not constructed as simulations
of illuminated surfaces nor did we measure either the
observers’ estimates of the illumination or the perceived
lightness at locations in the checkerboard context other
than the central target patch. Indeed, the impracticality of
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making the vast number of measurements required to
characterize the lightness of every check illustrates the
need for models that specify lightness and illumination at
all locations in a scene.
In considering the relationship between context and CTF,

an important conceptual issue arises. Ideally, one would
study context effects using experimental manipulations that
fix the visual system’s state of adaptation at a target
location, and then probe this state by studying the response
to a set of targets presented at this location. In this ideal
situation, the target itself would not perturb the state of
adaptation, so that the psychophysical measurements
across a set of targets reveal performance for a fixed
adaptation state set entirely by the context (Stiles, 1967). A
limitation of this approach is that there is no guarantee
that the target in fact has no effect on the adaptation state.
Indeed, the analysis in Figure 6, which shows that the
shape of the predicted CTF varies with the test range for
some of our contexts, suggests that there is a test effect.
Thus, although we fit our data with a model derived from
mechanistic ideas about adaptation, it is important to note
that the model parameters probably reflect the combined
effect of the checkerboard context and the target itself.
We do not regard this as problematic for our fundamental

purpose, which is to obtain a functional characterization of
how context affects the map between luminance and
perceived lightness. For this purpose, what matters is that
for a given context, the model fits the measured CTF.
However, it is important to remember that as we ultimately
try to relate the data directly to neural mechanisms of
adaptation, some caution in the mapping between model
and mechanism parameters will be warranted. Indeed, for
the first author, the phenomenal experience of increasing
target patch luminance much beyond the highest luminance
in the low–low checkerboard context is that the lightness of
the target patch remains constant, while the entire checker-
board context appears to get darker. This should be taken as
an introspective note rather than an empirical claim since,
as noted previously, we measured the perceived lightness
of central target patch and not the checkerboard context.
However, this observation in conjunction with the control
data suggests that it is worth considering the target itself as
an important component of the context as we move to
develop models that predict the CTF from a description of
the image. Some recent models of context effects in
lightness (Blakeslee & McCourt, 2001) and color (Brainard
et al., 2006) indeed embody this notion.
The caveat above noted, the fact that we can account for

the functional form of the CTFs with the gain–offset–
exponent model means that we can simplify the overall
problem of understanding how context affects lightness by
asking how context affects the model parameters. We
presented some initial results of this sort by asking how
context affects the black point, the white point, and the
gray point. Parameterizing the model in this manner has
the advantage that it refers the model parameters directly
to the data. One reason we chose to do so is that we do not

think that the underlying gain–offset–exponent form of the
model is uniquely determined by the data. If we had
chosen a different parametric form for the static non-
linearity and allowed one of its parameters to vary, we
might have found different parameters for the gain and
offset terms of the model. However, any three-parameter
model that accounted for the data would lead to the same
values for the black/white/gray point parameterization.
In examining how the model parameters depended on

context, we did not find simple relations. Indeed, although
an additive model provided a reasonable description of how
the black and white points depended on the inner and outer
ring characterization, the gray point dependence exhibited
a significant interaction. These effects are qualitatively
consistent with Gilchrist’s and Adelson’s notions that in
spatially complex scenes, the visual system parses the
image into spatially distinct frameworks/atmospheres and
that lightness processing within any one of them results
from an interaction of the image statistics within each
region. Our results add to this the observation that the
nature of this interaction cannot be purely additive. Here,
the division of the contextual image into separate regions
was accomplished through variation in the luminance
distribution within the inner and outer rings. Further
richness may arise when geometric cues that support
segmentation are considered. Our data set, which we have
carefully tabulated in the Supplementary materials, pro-
vides the opportunity to further refine these and other
(Blakeslee & McCourt, 2001; Rudd & Zemach, 2004)
models of how context affects lightness.
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