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The lightness of a test stimulus depends in a complex
manner on the context in which it is viewed. To predict
lightness, it is necessary to leverage measurements of a
feasible number of contextual configurations into
predictions for a wider range of configurations. Here we
pursue this goal, using the idea that lightness results
from the visual system’s attempt to provide stable
information about object surface reflectance. We
develop a Bayesian algorithm that estimates both
illumination and reflectance from image luminance, and
link perceived lightness to the algorithm’s estimates of
surface reflectance. The algorithm resolves ambiguity in
the image through the application of priors that specify
what illumination and surface reflectances are likely to
occur in viewed scenes. The prior distributions were
chosen to allow spatial variation in both illumination and
surface reflectance. To evaluate our model, we compared
its predictions to a data set of judgments of perceived
lightness of test patches embedded in achromatic
checkerboards (Allred, Radonjić, Gilchrist, & Brainard,
2012). The checkerboard stimuli incorporated the large
variation in luminance that is a pervasive feature of
natural scenes. In addition, the luminance profile of the
checks both near to and remote from the central test
patches was systematically manipulated. The
manipulations provided a simplified version of spatial
variation in illumination. The model can account for
effects of overall changes in image luminance and the
dependence of such changes on spatial location as well
as some but not all of the more detailed features of the
data.

Introduction

For the perceived color of an object to be useful in
recognition and discrimination, this color should
remain relatively stable across changes in the environ-
ment in which the object is viewed. Such stability is

called color constancy. Achieving color constancy
represents a challenge for the visual system because the
light reflected from an object depends both on the
object’s intrinsic reflectance spectrum and on the
spectral power distribution of the illuminant. Everyday
experience suggests that human color vision exhibits
reasonable color constancy. We can use color, for
example, to reliably distinguish a lemon from a lime
under both indoor and outdoor lighting. This intro-
spective conclusion is supported by the empirical
literature, in which substantial color constancy is found
when objects are viewed in reasonably realistic envi-
ronments (for recent reviews see Brainard & Radonjić,
in press; Foster, 2011; Shevell & Kingdom, 2008;
Smithson, 2005).

It is not currently understood how the visual system
resolves surface-illuminant ambiguity to achieve con-
stancy. One approach to this question is to ask how an
ideal observer might do so. This approach has long
been appealing (Helmholtz, 1910), but only recently has
it been possible to use Bayesian statistical theory and
related computational approaches to develop quanti-
tative algorithms whose performance may be linked to
and compared with human performance (Knill &
Richards, 1996). Bayesian methods provide a princi-
pled method using the statistical regularities of natural
scenes to resolve the ambiguity inherent in image data.

In the area of constancy, Bayesian approaches have
had success in modeling human performance for
restricted classes of scenes in which a collection of
matte surfaces are illuminated by a single diffuse
illuminant (Brainard, 2009; Brainard et al., 2006). Most
natural scenes, however, are not diffusely illuminated,
and there are empirical phenomena that cannot be
accounted for by models based on Bayesian algorithms
that assume a single scene illuminant. Indeed, any scene
in which the mapping between the retinal image and the
perception of color depends on spatial location is
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inconsistent with predictions derived from Bayesian
algorithms that assume a single spatially homogeneous
scene illuminant (for discussion, see Brainard &
Maloney, 2011). An important challenge for the
Bayesian program then is whether the approach can be
generalized successfully to account for performance
measured with stimuli that elicit geometric effects.
Doing so requires developing a Bayesian algorithm that
allows for spatial variation in the scene illumination
and then linking the performance of the algorithm to
human performance for an appropriate ensemble of
experimental stimuli.

Given the astronomical numbers of images that
could be presented to a subject and processed by an
algorithm, it does not seem wise to step from the study
of scenes with a single diffuse illuminant to the full
complexity of natural images. Thus we must make
some choice that restricts the stimulus ensemble that
will be studied. Our first restriction in the present work
is from the full color case to achromatic stimuli that
vary only in luminance. In this case, the corresponding
perceptual dimension is lightness. Within this domain,
recent work has helped organize a wide range of
empirical lightness phenomena. In particular, both
Gilchrist and Adelson theorize that it is useful to think
about lightness perception in terms of frameworks
(Gilchrist, 2006; Gilchrist et al., 1999) or atmospheres
(Adelson, 2000). They suggest that complex scenes can
be characterized as being composed of elemental
regions that are approximately uniformly illuminated.
A successful theory would explain how the visual
system segments the image into such regions, how each
region is processed, and the degree to which the
processing of separate regions interacts. The frame-
work or atmosphere conceptualization thus suggests
that an important step in extending the Bayesian
approach is to generalize to scenes that, while still
simple, are naturally separated into multiple such
frameworks or atmospheres and to ask whether
performance for such scenes may be modeled with an
appropriately elaborated Bayesian algorithm. Here we
proceed along these lines.

We consider scenes consisting of achromatic check-
erboards, for which we have previously reported an
extensive set of psychophysical lightness data (Allred et
al., 2012). The scenes have the feature that large
differences in image luminance between subregions of
the checkerboards provide cues that support segmen-
tation of the checkerboards into separate frameworks
or atmospheres. We develop a Bayesian algorithm that
estimates illumination and reflectance from image
luminance for the checkerboard scenes, and elaborate
the algorithm into a model of psychophysical perfor-
mance by linking its output to judgments of perceived
lightness. The algorithm resolves surface-illuminant
ambiguity via specified priors over illumination and

surface reflectance. We chose the parametric form of
the priors to express, within the checkerboard scene
domain, intuitions about the properties of naturally
occurring illumination and surface reflectances. Given
the parametric form of the priors, the model’s
predictions are determined by the particular parameters
that specify the priors. We fit the model to the
psychophysical data by using numerical parameter
search to find the prior parameters that resulted in the
best model fit, and we evaluate and discuss the resultant
account of the data.

Methods

Algorithm

We developed a Bayesian algorithm that estimates
illumination and surface reflectance from image data,
for a restricted class of scenes. The scenes consisted of
regular achromatic checkerboards. Thus each surface
in the checkerboard was specified by its location and its
scalar reflectance, ri,j, where i and j denote the row and
column location of the square, respectively. In our
experiments, we employed 5 · 5 checkerboards, so that
i and j ranged between 1 and 5. The entire checker-
board of surfaces was described by the column vector~r
whose entries are the ri,j in raster order.

We allowed the illumination to vary spatially, but for
simplicity required that it be constant over each
checkerboard surface. Thus the illumination was
described by the luminance incident on each surface in
the checkerboard, ei,j. This was summarized for the
entire scene by the column vector ~e.

The vector describing the scene, which we refer to as
the world vector, was taken as the concatenation of the
vectors ~r and ~e, so that ~w¼ [~r, ~e]. Although the scenes
we considered were greatly simplified relative to those
encountered in natural viewing, they embodied two key
features. These were the fundamental illuminant-
surface ambiguity that is characteristic of the problem
of color constancy and the fact that both reflectance
and illumination could vary across locations within a
scene.

Given the visual world of achromatic checkerboard
scenes, the sensory image was given by the reflected
luminance li, j at each checkerboard location. This was
described by a column vector~l. The reflected luminance
at each location was taken as the product of the
corresponding illuminant and reflectance: li, j ¼ ei, j ri, j.
The algorithm’s task was to estimate ~w from ~l. This is
clearly an underdetermined problem, since ~w has twice
as many entries as ~l. To formulate constraints on the
solution and develop an algorithm to find ~w from~l, we
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employed Bayesian decision theory (Berger, 1985; Lee,
1989).

There are three key ingredients required to develop a
Bayesian algorithm. The first is the likelihood. This
expresses the relationship between the representation of
the visual world (~w) and the observed data (~l) as a
probability distribution P(~l j~w). The likelihood charac-
terizes the probability with which a set of luminance
values ~l would be observed if the world actually
contained the surfaces and illuminants described by ~w.
For computer vision applications, we can think of the
likelihood as a probabilistic way to describe the
imaging process. In general, calculation of the likeli-
hood involves incorporation of processes that perturb
or add noise to an incident signal (e.g., optics of the eye
and photon noise). Here, however, we assumed that the
encoded luminance was noise-free, so that:

Pð~l j~wÞ ¼
�
d; if li; j ¼ ri; j ei; j for all i; j
0; otherwise

ð1Þ

where d is a constant. Using a noise-free likelihood
means that algorithm performance is governed by how
the prior, described in following text, resolves the
ambiguity about reflectance introduced by uncertainty
about the illumination.

The second ingredient for a Bayesian algorithm is the
prior. This captures statistical regularities of the visual
world as a probability distribution P(~w). We chose a
prior that expressed several assumptions about the
visual world. First, the surfaces in a scene are drawn
independently from the illumination. Thus, P(~w)¼
P([~r, ~e])¼ P(~r)P(~e).

Second, we assumed that the surface reflectances
within a checkerboard were independently and identi-
cally distributed, so that P(~r )¼Pi, jP(ri, j). We took the
reflectance distribution at each image location to be a
beta distribution

Pðri; jÞ ¼ Bðri; j;asurface;bsurfaceÞ: ð2Þ
The beta is defined over the range 0 to 1. The relative
probability of surfaces of different reflectance is
adjusted by the parameters asurface and bsurface.

Third, we assumed that the illuminant varied more
slowly across the array than the surface reflectances.
This idea, which seems intuitively reasonable, has been
used in previous surface/illuminant estimation algo-
rithms that allowed the illuminant to vary across
spatial locations (Funt & Drew, 1988; Land &
McCann, 1971). To capture this in the prior distribu-
tion, we took the illuminant prior to be a multivariate
lognormal

Pð~eÞ ¼ lnNð~e;~lillum;KillumÞ: ð3Þ
The lognormal is defined over positive values and

has a long positive tail. This allows the prior to account
for a wide range of illuminant intensities. The mean

illuminant intensity is determined by the parameter
vector ~lillum, which provided the mean value at each
location. We chose a spatially uniform mean, so that
each entry of ~lillum was given by a single parameter
lillum. The lognormal also has a covariance matrix
Killum, which allowed us to specify that illuminant
intensities at neighboring locations are correlated. Such
specification captures the assumption that the illumi-
nant varies slowly over space. How slowly the
illuminant varies is determined by the exact structure of
the covariance matrix. Indeed, Killum was constructed
to represent a first-order Markov field, so that the
correlational structure was controlled by a single
parameter qillum. Let the variance of the illuminant
intensity at each location be the same and be given by
r2
illum. Then the covariance between illuminant intensi-

ties at locations [i, j] and [k, l] was given by
r2
illumqji�kjþjj�ljillum .

The likelihood and prior were combined using
Bayes’ rule to calculate the posterior:

Pð~w j~l Þ ¼ cPð~l j~wÞPð~wÞ ð4Þ
where c is a normalizing constant. The posterior
combines the likelihood and the prior and describes the
probability of any visual world given the observed
luminance values.

The third ingredient for a Bayesian algorithm is to
specify a rule for choosing an actual estimate from the
posterior. Here we chose the ~w that maximized the
posterior. To find this ~w for a set of luminances~l and a
set of prior parameters [asurface, bsurface, lillum, r2

illum,
qillum] we used numerical search as implemented by the
fmincon function of MATLAB (Mathworks, Natick,
MA). Because we assumed a noise-free likelihood, it
was sufficient to search only over the space of
illuminant vectors ~e, since each choice of ~e allowed
computation of the~r that was consistent with it and the
observed luminances ~l. Thus our parameter search was
over a 25-dimensional space. We bounded the searched
illuminant intensities to lie between 0.001 and 30.

It was also critical to start the search with reasonable
initial guesses as to the estimates. To produce a set of
such guesses, we took 2,000 draws from the prior
distribution, and found a set of n-dimensional linear
models for the space of illuminants (where n took
values of [2, 4, 6, 9, 10, 12, 14]). We searched over
illuminants within each of these linear models in order
of increasing dimension, using the result of the
preceding search as the initial guess for the next. The
estimate of~e that resulted in the highest posterior from
this preliminary optimization was used as the initial
guess for the full dimensional problem. For a subset of
conditions, we investigated the sensitivity of our search
procedures to the initial guess. With some guesses, the
fmincon search simply returned the initial guess. We
detected and rejected these cases. For the other initial
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guesses, the returned solution was independent of the
initial guess. This check provides some assurance that
the returned solutions approximate global maxima of
the posterior, although we cannot know this with
certainty.

For a subset of conditions, we also verified that
searching across~r did not yield different solutions than
searching across ~e.

In summary then, for a given set of parameters
[asurface, bsurface, lillum, a2

illum, qillum] and a set of

luminance values ~l, our algorithm estimates the
reflectance and illuminant values that are most likely.
That is, our estimate is the ~w that maximizes P(~wj~l ).

Psychophysics

The methods used to collect the psychophysical data,
as well as the data themselves, are described in detail in
Allred et al. (2012) and summarized here. Briefly, seven
observers looked through an aperture into a rectangu-
lar enclosure, at the end of which they viewed an
achromatic 25-square checkerboard presented on a
custom-built high-dynamic range display (see
Radonjić, Allred, Gilchrist, & Brainard, 2011 for
display specifications). Observers were asked to judge
the lightness of the center square (test patch) by
matching it to one of a series of Munsell papers that
ranged from 2.0 (black) to 9.5 (white) in 0.5-unit steps.

The test patch (center square) took on 24 distinct
luminance values, ranging from 0.096 cd/m2 to 211 cd/
m2. The smallest value was the minimum luminance
value of the high-dynamic range display and should be
considered approximate. The remainder of the test
patches were chosen in equal log steps between 0.24 cd/
m2 and the maximum luminance of the display 211 cd/
m2. The patches had CIE xy chromaticity (0.43, 0.40).
The same 24 test patches were judged within nine
separate checkerboard contexts (Figure 1).

A standard checkerboard context was created by
taking 24 luminance values between 0.11 and 211 cd/m2

(contrast ratio 1,878:1) that were equidistant in
logarithmic units. These 24 luminance values were
assigned to a 5 · 5 checkerboard surrounding the
center test square. To assign luminance values to
squares, we took random draws of spatial arrangement
until neither the brightest nor the darkest luminance
were in the inner ring immediately adjacent to the
center square. This arrangement was used as the
standard context in all experiments; a representation of
this standard checkerboard context is shown in Figure
1. The remaining eight test checkerboard contexts were
created in the following fashion. We divided the 24
checkerboard squares into inner (eight locations
immediately adjacent to the center test square) and
outer rings (16 locations surrounding the inner ring).

We created low, standard, and high luminance distri-
butions for inner and outer rings (for details, see Allred
et al., 2012). Then we assigned each possible permuta-
tion of these rings to the eight test checkerboard
contexts (i.e., low inner–low outer checkerboard; low
inner–standard outer checkerboard; low inner–high
outer checkerboard, etc.). The spatial arrangement of
the low and high inner and outer rings in each test
checkerboard context preserved the rank order of
luminance values in the standard checkerboard context.

Note that the test checkerboard contexts were not
constructed to simulate a fixed set of papers under
different illuminants; that is, neither inner nor outer
ring manipulations were implemented as multiplicative
factors of the corresponding luminance values for the
standard checkerboard context. Thus, it is not
straightforward to interpret the psychophysical data in
terms of the degree of constancy they reveal. Rather
than asking about constancy per se, we ask whether a
model derived from an algorithm designed to achieve
constancy can predict the observed psychophysical
data.

To proceed, we averaged the luminance values
matched to each Munsell paper; the data aggregated
thus give, for each Munsell paper, a set of nine
luminance values (one for each test checkerboard
context) that are perceptually equivalent. By plotting
the luminance values for each of the eight test
checkerboard contexts against the luminance values for
the standard checkerboard context we establish eight
context transfer functions (CTFs) that characterize the
effect of changing context from the standard checker-
board context to the each of the eight test checkerboard
contexts. It is these CTFs in particular that we seek to
model.

Using the algorithm to model psychophysical
lightness judgments

We applied the Bayesian algorithm to the stimuli
used in the psychophysical experiments. For any set of
algorithm parameters (priors), we obtained estimates of
the illuminant and surface reflectance at each checker-
board location from a specification of the luminance in
that checkerboard context. In our previous report
(Allred et al., 2012) and in the methods summary
above, luminance values are reported in units of
candelas per square meter; for the calculations,
luminance was specified in normalized units whose
range was 0 to 1, with 1 equivalent to the maximum
luminance displayed in the experiment.

To compare the algorithm’s performance to the
psychophysical data, we need to specify a linking
hypothesis that connects the algorithm’s output to the
experimental measurements (see Brainard, Kraft, &
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Longére, 2003; Teller, 1984). To do so, we assumed that
when the Bayesian algorithm estimated that two
luminance values in different contexts [La(Context x),
Lb(Context y)] had the same reflectance (Rz), then these
two test luminance values would match in lightness
across the context change. This linking hypothesis is
based on the general idea that perceived lightness is a
perceptual correlate of surface reflectance, but takes
into account the fact that reflectance is not explicitly
available in the retinal image. The role of the algorithm
in the model is to provide a computation that converts
proximal luminance to a form that is more plausibly
related to perceived lightness.

Given the linking hypothesis above, we computed
CTFs for the algorithm that could be compared to the
psychophysical CTFs. Indeed, computation of algo-
rithm-based CTFs proceeded in a fashion similar to
that used to generate the psychophysical CTFs. The
one key difference is that rather than using the matched
Munsell papers to establish equivalence across con-
texts, we used the estimates of surface reflectance
returned by the algorithm. Thus the particulars of the
computation differed slightly.

First, as described in Methods, we computed
algorithm estimates of each of the 216 test–checker-
board luminance combinations viewed by human
observers (24 test patches embedded in each of nine
checkerboard contexts). Although we computed both
illuminant and surface reflectance estimates for all 25
checkerboard locations in each case, the key value that
we extracted to compute the CTFs was the estimated
surface reflectance at the test location (central test

patch). Then, for each context, we fit estimated test
patch reflectance as a function of test luminance with a
third-order polynomial. This allowed us to interpolate
between the discrete estimated reflectance values. The
polynomial functional form was chosen for conve-
nience and has no theoretical significance. Let Restimated

¼ fx(Li) represent the interpolated reflectance values,
where x represents one of the nine checkerboard
contexts and i indicates the 24 test patch values. In the
standard context (x ¼ St), we evaluated this function
for all Lt to obtain a set of reflectance values [R]St that
served as the referents for establishing CTFs (much as
the Munsell papers did for the psychophysical judg-
ments). To compute a CTFx, we inverted the interpo-
lated function fx to find the value L that yielded each
[R]St. Thus, each algorithm-based CTF consists of 24
[LSt, Lx] pairs that were taken as perceptually
equivalent.

The five parameters asurface, bsurface, lillum, r2
illum, and

qillum control the prior probability and hence drive the
algorithm estimates. The parameter values we used for
the algorithm were chosen to minimize the average
error between algorithm-based CTFs and psychophys-
ical CTFs. To find these values, we used a grid search
on the algorithm parameters. We computed algorithm
estimates for the 216 test–checkerboard pairs described
above for thousands of sets of parameter values. Initial
parameters were chosen through visual inspection of
model predictions for a variety of simulated scenes.
From these initial values, we varied each parameter in
coarse steps to determine the best region of parameter
space and then sampled this space more finely. Since

Figure 1. Illustration of the nine experimental checkerboard contexts. Average luminance of inner ring and outer ring were divided

into low, standard, and high conditions. The central test patch has the same luminance in all nine checkerboard contexts shown here.
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our grid search was not exhaustive, it remains possible
that a different set of parameter values could fit the
data better.

For each set of parameters, we calculated algorithm-
based CTFs via the method described above. Algo-
rithm-based CTFs were constructed from 24 [LSt, Lx]
pairs while the psychophysical CTFs were constructed
using the 16 [LSt, Lx] defined by the Munsell chips. To
directly compare the two sets of CTFs, we interpolated
the algorithm-based CTFs to obtain values for each of
the 16 psychophysical Lst values. We chose final
algorithm parameters that minimized the average
prediction error in a least-squares sense. We refer to
these as the derived priors to emphasize that they were
obtained by a fit to the psychophysical data, rather
than directly from measurements of naturally occurring
illuminants and surfaces.

Results

To give intuition about the Bayesian algorithm, we
first provide pictorial depictions of algorithm estimates
for the nine checkerboard contexts. We then make
quantitative comparisons between algorithm estimates
and psychophysical measurements of lightness and
discuss the aspects of the algorithm that allow it to
predict the broad features of the human judgments.

Intuition about the algorithm

Pictorial depictions of algorithm estimates of illu-
mination and reflectance for all nine checkerboard
contexts (those in Figure 1) are shown in Figure 2.
Inspection of these pictorial depictions provides intu-
ition about the algorithm’s behavior.

First, the algorithm estimates that illumination
varies systematically across locations, for most of the
contexts. When the inner and outer rings of the
checkerboard were drawn from very different lumi-
nance distributions, such as in the low–high (upper left
panel in Figure 2) or high–low (bottom right panel in
Figure 2) checkerboard contexts, the algorithm esti-
mated higher spatial variation in the illuminant than
when inner and outer rings of the checkerboard were
drawn from the same luminance distributions, such as
in the low–low (bottom left panel in Figure 2), standard
(center panel in Figure 2), or high–high (top right panel
in Figure 2) checkerboard contexts. This is consistent
with a visual interpretation of the scene as having a
shadow at the center of the low-high checkerboard
context, a spotlight at the center of high–low checker-
board context, and relatively uniform illumination for
the low–low, standard, and high–high checkerboard
contexts.

Second, the overall algorithm estimates of the
illuminant depend on the overall luminance of the
checkerboard contexts. A higher estimated illuminant
is returned for the high–high checkerboard context

Figure 2. Pictorial interpretation of algorithm estimates of the illuminant (left panel) and reflectance (right panel) of one test patch

luminance for each checkerboard context shown in Figure 1. For visualization purposes, the estimated values are scaled and

normalized (one factor was applied to all illuminant estimates, another was applied to all reflectance estimates). Checkerboard

contexts are grouped by the luminance profile of inner and outer rings, as in Figure 1. The algorithm estimates shown here were

obtained using parameters asurface ¼ 1, bsurface ¼ 2, lillum ¼ 1, r2
illum ¼ 0.81, qillum ¼ 0.46.
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than for the standard checkerboard context, and
similarly a higher estimated illuminant is returned for
the standard checkerboard context than for the low–
low checkerboard context. This also makes sense. Since
surface reflectance is bounded in the prior to lie
between 0 and 1, large changes in overall luminance
must be caused by illumination changes.

Third, because the illumination estimates vary with
checkerboard context, so too do the reflectance
estimates. In particular, the reflectance estimate for the
central test patch, which has the same luminance in
each case, differs. Equally important, this estimate is
affected by both the inner and outer ring luminances.
This means that the algorithm predicts that both inner
and outer ring luminance will affect perceived lightness.

To understand how the algorithm arrives at its
estimates, it is helpful to consider the derived param-
eters of the prior distributions. Across possible sets of
illuminants and surfaces consistent with a set of
observed luminances, it is the priors that drive the
algorithm estimates. Intuition about the derived priors
is provided in pictorial form in Figure 3, which shows
examples of draws from the derived prior distributions.
Each checkerboard context represents a pattern of
surfaces (left panels) or illuminants (right panels) of
similarly high probability. Surfaces are independent
from one another in the prior; thus, very dark surfaces
are adjacent to very light surfaces in Figure 3 (left
panels). The derived values of the beta distribution are
such that darker surfaces are more probable than
lighter surfaces. The prior distribution for the illumi-
nant differs. Importantly, although the illuminant prior
allows spatial variation, spatial variation that is
gradual over locations is more likely than an abrupt
change from one location to the next. The derived
correlation parameter qillum controls this aspect of the
prior, with 1 indicating perfect correlation (uniform
illumination) and 0 indicating independent illumination
at each spatial location. The derived value of qillum was
0.46, intermediate between these two extrema. In

Figure 3, the illuminants shown vary, but slowly, across
space. The illuminant prior permits high and low
illuminant luminance within one checkerboard context
(top left illumination draw), but the highest illumina-
tion is not likely to be immediately adjacent to the
darkest illumination. Relatively spatially uniform
illuminations of different mean intensities are also
probable (rightmost illumination draws).

Comparison of model predictions with human
performance

Figure 4 shows a comparison of the CTFs predicted
via the algorithm (lines) with those obtained from
human observers (symbols). The panels are organized
by the type of checkerboard manipulation, with inner
ring manipulations in the top left, outer ring manipu-
lations in top right, both ring manipulations of the
same sign in the bottom left, and both ring manipu-
lations of opposite sign in the bottom right. The solid
black line in each panel represents the identity line: if
checkerboard context had no effect on perceived
lightness, the data (and algorithm estimates) would fall
along this line.

Several salient characteristics of the model and
psychophysical CTFs are clear from inspection of
Figure 4. First, though neither the psychophysical nor
model CTFs are straight lines in the log-log plots, they
do have an average horizontal offset from the diagonal
that varies with checkerboard context. For example,
the luminance of the inner ring elicits a larger offset
than the luminance of the outer ring (red and cyan lines
further from the diagonal in the top left panel of Figure
4 than in the top right panel of Figure 4). The
algorithm-based CTFs capture this inner–outer asym-
metry. That regions of space close to a test influence its
perception more than distant regions is a well-
understood phenomenon, but algorithms that do not
allow spatial variation in the illuminant cannot easily
account for this phenomenon, since they are spatially
stationary in terms of regional influence (but see
Brainard et al., 2006 for an ad hoc approach).

Second, some CTFs exhibit an additional offset
asymmetry: decreasing the luminance of the checker-
board context has a larger effect on perception than
increasing the luminance (red lines further than cyan
lines in the top right and bottom left panels of Figure
4). In contrast to the inner–outer asymmetry, it is not
obvious from the luminance manipulations why this
asymmetry should exist in some contexts but not in
others (see Allred et al., 2012 for more discussion). The
algorithm-based CTFs, however, do capture this broad
feature of the data.

A third clear feature of the CTFs is that for high
luminance test patches (right portions of each panel in

Figure 3. Example of equally likely draws from the derived

surface prior (left) and the derived illuminant prior (right). The

parameters for surfaces were (asurface, bsurface) and illuminant

parameters were (lillum, r2
illum, qillum) as reported in the caption

of Figure 2.
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Figure 4), there is a tendency of the data to curve
toward the identity line. For checkerboard contexts
with decreased luminance (red lines), this curvature
indicates that larger changes in luminance in the test
context are mapped to relatively smaller changes in
luminance in the standard context. Another way to
think about this phenomenon is that in these contexts,
the perceived lightness (as indicated by the perceptually

equivalent standard context luminance) tends to
saturate, so that a larger range of test patch luminances
appears whitish. Just the opposite is true when
checkerboard context luminance is increased. In these
cases (cyan lines), small luminance changes in the test
context are mapped to relatively larger luminance
changes in the standard context. Again, another way to
understand this is that in these contexts, a smaller range

Figure 4. Psychophysical (data points) and algorithm-based (colored lines) CTFs. Each data point represents the average of the test

patch values matched to a different Munsell paper in a test checkerboard context (x-axis) and the standard context (y-axis). The top

left panel shows data for the low inner, standard outer (red) and high-inner, standard outer (cyan) test contexts; the top right panel

shows data for the standard inner, low outer (red) and standard inner, high outer (cyan) contexts; the bottom left panel shows data

for the low inner, low outer (red) and high-inner, high outer (cyan) test contexts; the bottom right panel shows data for the low inner,

high outer (red) and high inner, low outer (cyan) contexts. Error bars are SEM across observers. Solid colored lines are CTFs computed

using the Bayesian algorithm with derived surface prior parameters asurface¼ 1, bsurface¼ 2, and derived illuminant prior parameters

lillum¼ 1, r2
illum¼ 0.81, qillum¼ 0.46. The solid black identity line in each panel shows where the data would fall if there were no effect

of context on lightness. The dashed horizontal lines represent the minimum and maximum test luminance.
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of test luminances tend to look whitish. The algorithm-
based CTFs reproduce this curvature reasonably well
for cases in which the contextual luminance tends to
increase (cyan points and lines), although not for the
cases in which the contextual luminance tends to
decrease (red points and lines).

Finally, for some checkerboard contexts, there is
also curvature at the lower end of the test patch
range. This is most obvious in the low–low checker-
board contexts (red data in the bottom left panel).
The algorithm-based CTFs fail to capture this
curvature.

Understanding the average offset

The asymmetry of the horizontal offset in the CTFs
caused by manipulating the inner and outer rings can
be understood through the spatial variation in the
illuminant. Because the algorithm is noise free, the
reflectance estimates of the test patch (and hence the
CTFs) are determined by the illuminant estimates at
the test patch; thus, large changes in the test patch
illuminant estimation between contexts result in large
average offsets. Slow spatial variation in the algo-
rithm’s estimated illuminant means that estimates of
test patch illumination will be coupled to illumination
estimates of the entire checkerboard context. The
spatial variation in the estimated illuminant is con-

trolled by the correlation parameter of the illuminant
prior. Thus, to explore the algorithm’s behavior with
respect to the inner and outer rings, we manipulated the
correlation parameter of the illumination prior and
computed the effect of this manipulation on the
average offset. To quantify this effect, we took as an
offset index the average horizontal offset of each point
of the CTF from the diagonal.

The strength of the correlation parameter in the
illuminant prior has a systematic affect on the
algorithm’s offset index, as seen in Figure 5. We varied
qillum, holding other prior parameters constant, and
computed algorithm-based CTFs for all checkerboard
contexts. This offset index is shown in Figure 5 for the
six checkerboard contexts in which the inner, outer, or
both rings were increased or decreased. The solid
horizontal lines represent the observed psychophysical
offset in each condition. For each checkerboard
context, more spatially correlated illuminant priors
(higher qillum) yield higher average offset values (all
points tend away from 0 with increased qillum in Figure
5). This effect is more pronounced when luminance is
decreased relative to the standard checkerboard context
(lines with offset indices less than 0). When qillum is too
low, the illuminant varies spatially too much and the
context does not affect the test patch enough; that is,
the algorithm offset from 0 is smaller than the average
psychophysically measured offset.
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Figure 5. Effect of illuminant correlation on average CTF offset. The x-axis shows qillum in the illuminant prior and the y-axis shows the

offset index. The offset index is computed as the average horizontal distance (in log luminance) of psychophysical (thin lines) or model

(heavy lines) CTFs from the diagonal. To obtain model CTFs from which to calculate the offset index, we computed algorithm

estimates for different sets of prior parameters, where qillum (illumination correlation parameter) took 31 values equally spaced

between 0.3 and 0.6, and the other prior parameters were as reported above. CTFs were computed for checkerboard contexts in

which luminance of the inner (blue), outer (red), or both (green) rings was increased (offsets above 0) or decreased (offsets below 0).

Vertical black dashed line represents qillum used to obtain the algorithm CTFs shown in Figure 4, and the horizontal black bar is 0

offset, for reference.
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Understanding the curvature for high luminance tests

To understand the curvature for high luminance
tests, it is helpful to consider how the algorithm’s
illuminant estimates are affected by the test patch
luminance. Traditionally, tests in scenes are often
thought of as probes that allow measurement of the
overall effect of a particular context (Stiles, 1978), and
the data are analyzed under the assumption that the
presentation of the test does not itself play a contextual
role. To the extent that this is true of the algorithm,
estimates of the illuminant at the test location should
be independent of test patch luminance. This in turn
would make the algorithm-based CTFs lines with unit
slope in the log-log plots shown in Figure 4. Instead,
the algorithm-based CTFs exhibit some curvature, and
this fact indicates that the algorithm’s estimates of the
illuminant at the test location within each context vary
with test luminance and that this variation differs
between contexts. To examine this further, Figure 6
plots the algorithm’s estimate of the illuminant at the
test patch location as a function of test patch luminance
for each checkerboard context. For low test patch
luminances, the assumption that the test itself does not
play a contextual role holds true: the illumination
estimate does not depend on test patch luminance.
However, the test exerts a larger and larger effect as the
test patch luminance increases (upward curvature in the
right part of Figure 6). The size of the test-luminance
effect varies with checkerboard context, and is more

pronounced for lower luminance checkerboards (solid
lines).

It is intuitively clear why increasing the test
luminance might increase the illuminant estimate at the
test location: after all, when all else is equal, more light
reflecting to the eye from a location is a likely indicator
that more illumination was impinging on that location.
Thus the upward curvature in Figure 6 is not
surprising. Understanding what features of the algo-
rithm create the detailed behavior of the curvature is
harder, because the CTFs arise from a complex
interaction between the surface prior, illuminant prior,
and all 25 checkerboard luminances. One salient
feature of the algorithm, however, is the constraint that
surface reflectance estimate must be between 0 and 1.
Since the likelihood is noise free, this constrains the
illuminant estimates to be higher than the test
luminance, shown by the thick black identity line in
Figure 6. As test luminance increases, the estimated
illumination in most contexts begins to approach this
lower illumination bound and must curve upward to
avoid crossing it. The upward curvature in Figure 6 in
turn provides an explanation for the curvature in the
predicted CTFs in Figure 4. Because the CTFs involve
a comparison to the standard context, curvature in the
CTFs will arise when the slopes of the colored lines in
Figure 6 are different from the slope of the line
representing the standard context. Thus we can
understand the predicted CTF curvature seen at high
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Figure 6. Effect of test patch luminance on overall illumination estimates. The y-axis shows the algorithm’s estimated illumination for

the center check as a function of test patch luminance for all nine checkerboard contexts; solid colored lines¼ low luminance profile

checkerboard contexts; black line¼ standard context; dashed lines¼ high luminance profile checkerboard contexts. The thick black

identity line shows the lower bound imposed on the illuminant estimate at the test location because of the constraint that surface

reflectances do not exceed 1.
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test luminances for the high–low and high–high
contexts as a result of the fact that the illuminant lower
bound does not affect these contexts as much as it does
the standard context.

As we noted previously, the predicted CTFs do not
capture the curvature seen in the psychophysical CTFs
at low test luminances. With reference to Figure 6, this
failure can be understood by noting that at low test
luminances, the estimated illuminant is independent of
test luminance for all checkerboard contexts. These
illuminant estimates are not constrained by the bound
shown by the thick black line and instead depend in a
more complex way on the priors. Within our para-
metric model of surface and illuminant priors, we did
not find parameters that could produce the appropriate
predicted CTF curvatures at low test luminances while
at the same time preserving an overall good fit to the
psychophysical CTFs. It is possible that a different
parametric choice of priors could remedy this aspect of
our model’s predictions.

Evaluating the overall model fit

The preceding plots and associated discussion
indicate that the five-parameter Bayesian model cap-
tures much of the systematic variation in the data, but
not all of it. To look at this quantitatively, we
compared summary measures of the overall quality of
the model fit to those obtained with a set of five
comparison models. For each model, we summarized
the overall quality of fit in two ways. The first was in
terms of the overall root-mean-squared fit error to the
entire data set of CTFs. This measure assesses how
close the model predictions are, on aggregate, to the
eight measured CTFs. The second was in terms of a
root-mean-squared cross-validation error. The cross-
validation error was obtained in a leave-one-out
fashion, in which we fit the model to the data for each
possible subset of six out of our seven observers, used
the resulting parameters to predict the data for the left-
out observer, and aggregated the prediction error over
all seven left-out observers. The cross-validation
measure is useful because it is sensitive to overfitting of
the data by a model.

Three of our comparison models were not expected
to provide a good fit to the data. Instead, these three
models provided a sense for the variance in the data
that were available to be modeled. The first model was
an overall mean (OM) model, which fit the entire set of
CTFs with their grand mean. The OM model errors
represent an upper bound for any reasonable model.
They also provide a sense of the total variance in the
data set. In the second model, a context mean (CM)
model, each CTF was fit by its own mean. The CM
model errors provide a sense of the variance in the data

set that results from changing the test patch luminance,
once the overall effect of checkerboard context has
been modeled. Finally, in a single-CTF (SCTF) model,
all eight CTFs were fit with the mean CTF. The SCTF
model errors provide a sense of the variance in the data
set that results from changing the checkerboard
context, once the overall effect of test patch luminance
has been modeled.

A fourth comparison model was a nonparametric
regression (NP Reg) model, designed to provide an
excellent description of the data (low overall fit error).
The fits of this model were obtained using multivariate
kernel smoothing regression (Nadaraya, 1964; Watson,
1964) with a Gaussian kernel, as implemented in the
routine ksrmv made available by Yi Cao at the
MATLAB Central File Exchange (http://www.
mathworks.com/matlabcentral/fileexchange). This
method, in essence, provides a smoothed look-up table
of the data. We choose the width of the Gaussian
kernel by hand to achieve a good overall fit. The overall
fit error for NP Reg model is not of interest per se
because it can be made very small by optimizing the
parameters of the kernel regression. Further, such
models do not provide any scientific insight about the
nature of the computations mediating lightness per-
ception. However, the cross-validation error for the NP
Reg model is of interest because it provides a
benchmark for other models. A competitor model that
has a higher overall fit error than the NP Reg model
can still in principle have a lower cross-validation error,
depending on the degree to which the NP Reg model
overfits the noisy data and the degree to which the
competitor model captures structure in the data that
survives measurement variability. Indeed, models that
capture most of the underlying structure in the data
should have cross-validation errors comparable to or
lower than that of this model.

Our final comparison model was a linear regression
(Lin Reg) model. This model predicts the CTFs as a
linear function of the test and contextual log lumi-
nances. The model is a variant of the well-known
retinex lightness algorithm (Land and McCann, 1971)
and fit to our data. This follows because one of the
standard variants of the retinex reduces to normalizing
the test luminance by a spatially weighted geometric
mean of all of the luminances in the image (Brainard &
Wandell, 1986; Land, 1986). The Lin Reg model shares
with our Bayesian model the fact that the CTFs are
predicted directly from the image data, but with the Lin
Reg model the predicted CTFs are constrained to be
lines in the log-log plots of Figure 4. The Lin Reg
model provides a reasonable benchmark for the
performance of the Bayes model. Although we believe
that the pursuit of Bayesian models of color and
lightness is well-motivated theoretically (see Introduc-
tion and Discussion), it would reduce enthusiasm for
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further exploration if they cannot perform as well as
extant more heuristically motivated models.

Figure 7 shows the overall fit error and cross-
validation error for our Bayesian model (Bayes) and for
the five comparison models. As expected, the OM, CM,
and STCF models all have high overall fit error and
high cross-validation error. The NP Reg model has low
overall fit error, but considerably higher cross-valida-
tion error. Of interest is that both the Bayes and Lin
Reg models have cross-validation errors (0.26 and 0.28,
respectively) similar to that of the NP Reg model
(0.25). Given that both the Bayes and Lin Reg model
produce smooth predicted CTFs that deviate from the
measurements, it seems unlikely that these two models
are overfitting the data. In addition, the similarity of
their cross-validation errors with that of the NP Reg
model suggests that the Bayes and Lin Reg models are
capturing most of the overall variance in the data that
survives individual differences.

The Bayesian model has slightly better overall fit and
cross-validation error than the Lin Reg model (fit error
0.12 vs. 0.14; cross-validation error 0.26 vs. 0.28). This
confirms, in an overall fit sense, the conclusions we
drew above from examination of the data and Bayesian
model fits Figure 4: the Bayesian model follows some of
the curvature in the CTFs that is structurally incon-

sistent with the Lin Reg model. The differences between
the two models in this regard are small, however.

Although the cross-validation analysis indicates that
the Bayesian and linear regression models capture most
of the overall variance that survives individual differ-
ences, a more fine-grained analysis of the cross-
validation fits (not shown) reveals that the curvature
shown in Figure 4 is a reliable feature of the data. This
analysis examines the residuals of the predictions of
each model as a function of the standard luminance,
after shifting each CTF by the left-out subject so that
the mean prediction matches the mean data. There is
no obvious systematicity to the NP Reg model residuals
when examined in this way, but the residuals for both
the Bayes and Lin Reg models depend systematically
on the standard luminance in a manner consistent with
data shown in Figure 4. That is, once individual
variability in the overall position of the CTFs is
accounted for, the curvature seen in the aggregate data
remains. The residual curvature is slightly smaller for
the Bayesian model than for the Lin Reg model at high
standard luminances, again consistent with the con-
clusions we drew above in our discussion of the full
data set. The performance of the Bayesian model could
thus be improved if it becomes possible to formulate
priors that enable the model to better capture the
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Figure 7. Overall fit errors (blue bars; see text for description) and cross-validation error (red bars; see text for description) for six

different models: NP Reg (nonparametric regression), Bayes (Bayesian model), Lin Reg (linear regression), single-CTF (SCTF), CM

(context mean), and OM (overall mean). The prediction error plotted is the root-mean-squared difference between the measured

CTFs and those predicted by the relevant model. In fitting the Bayesian model to subsets of the data, we did not iterate over many

possible starting points but rather began each search using the parameters that provided the best fit to the full data set.
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curvature seen in the data. In exploring the effect of the
Bayesian models prior parameters on the predicted
CTFs, we do find that there are sets of priors that yield
curvature matching the data for some individual CTFs
(e.g., the highly curved CTF measured for the low–low
condition). These sets of prior parameters, however,
yield very bad predictions for other CTFs.

Discussion

Spatial variation in the illuminant

The idea that the visual system is sensitive to spatial
variation in the illuminant, and that the illuminant
varies more slowly over space than do surfaces, was
central to the retinex model of Land and McCann
(1971). Unlike the current work, however, the compu-
tations driving the retinex model were based on
heuristics and did not provide for explicit specification
of image priors nor optimal use of image data for
estimation. Work in computer vision also uses physical
models in service of algorithms designed to separate
illuminant and surface reflectance contributions for
scenes that incorporate geometric structure (e.g.,
Barron & Malik, 2012; Bell & Freeman, 2001; Funt &
Drew, 1988; Gehler, Rother, Kiefel, Zhang, & Schol-
kopf, 2011; Grosse, Johnson, Adelson, & Freeman,
2009; Romeiro & Zickler, 2010; Tappen, Freeman, &
Adelson, 2005). Our Bayesian algorithm shares with
this work the fact that the illumination is allowed to
vary spatially. In our work, however, we exploited the
structure of the restricted class of scenes we studied to
simplify the formulation. We linked algorithm output
to human performance and found that we can account
for effects of overall changes in image luminance
(Figure 4), the dependence of such changes on spatial
location (Figure 4 and Figure 5), the curvature of the
measured context transfer functions at high test
luminances for some but not all CTFs (Figure 4 and
Figure 6), and the observed increment–decrement
asymmetries (Figure 4 and Figure 5). Although there
are aspects of the data that our model does not account
for, such as the curvature of the CTFs at low test
luminances, the fact that it provides a unified account
of much of the data suggests the usefulness of this
approach for developing quantitative models of per-
ceived lightness for spatially complex images.

To verify that our model’s success at accounting for
spatial effects was not overly specific to our stimuli, we
applied it to simulations of the staircase Gelb effect, an
illusion that has been taken as a challenge for models
based on inverse-optics algorithms (Cataliotti & Gil-
christ, 1995; Gilchrist, 2006). To produce the illusion, a
series of papers that range from black to white is

illuminated by a spotlight in an otherwise dim room.
Though the papers range from black to white (reflec-
tance contrast¼ 30:1) observers typically report that the
papers appear to range from midgray to white (reflec-
tance contrast¼ 3:1; Cataliotti & Gilchrist, 1995). This
illusion cannot be explained by the idea that observers
make an overall misestimation of a spatially uniform
illuminant. Using the published values (Cataliotti &
Gilchrist, 1995), we simulated the luminance of the
physical setup and, using the Bayesian algorithm with
the derived prior parameters reported here, estimated
the reflectance and illumination at each location.

The algorithm’s estimates at locations corresponding
to staircase Gelb effect stimuli are in good agreement
with the phenomenology of the illusion, as shown in
Figure 8, in which the algorithm estimates the contrast
ratio between the darkest simulated paper and the
lightest simulated paper to be 1.97:1, although the
actual luminance contrast under the simulated uniform
spotlight is 30:1. To see why, it is helpful to consider the
illumination estimate (Figure 8, top right panel). In the
simulation, the luminance of the white paper under the
spotlight is very high. Since reflectance of surfaces is
constrained in the algorithm and in the real world, the
algorithm must solve the ambiguity by estimating a
very high illuminant. However, outside of the spotlight,
the very low luminance values constrain the algorithm
to estimate both low reflectance and low illumination.
The illumination cannot change abruptly at the edge of
the simulated spotlight, since the illumination prior is

Figure 8. Algorithm estimates for the staircase Gelb effect.

Leftmost panels include the simulated spotlight (top) and

simulated surfaces ranging from black to white (bottom).

Central panel is the simulated luminance, created by pixel-wise

multiplication of the illuminant and reflectance. Values are from

the staircase Gelb effect reported in (Cataliotti & Gilchrist,

1995). Papers span a 30:1 reflectance range (0.03 to 0.90), and

the five-square spotlight is 30 times brighter than its surround.

Right panels show algorithm estimates for the illuminant (top)

and reflectance (bottom). Values have been scaled for

visualization purposes. One scaling procedure is used for

illuminants (both simulated and estimated, top panels), one for

reflectance (both simulated and estimated, bottom panels), and

one for luminance (center panel).
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constrained to vary slowly over space. Thus, the
algorithm estimates that the illumination over the
simulated papers is changing slowly and the darkest
paper is under a lower illumination than the lightest
paper. To be consistent with the luminance data, the
algorithm must overestimate the reflectance of the
darker papers, resulting in the observed compression.

We do note that the algorithm’s estimates at
locations outside of the five central squares do not
correspond with the usual description of this illusion.
For example, to the right of the most luminous square,
the algorithm estimates a high illuminant and a
correspondingly low surface reflectance. In the original
paper, Cataliotti and Gilchrist (1995) did not measure
the perceived lightness of surfaces immediately adjacent
to the spotlight-illuminated papers. Indeed, in the
actual illusion, a series of five papers is presented in
isolation, with the surrounding surfaces at some depth
behind the papers. However, though perceived light-
ness at the background locations was not measured, an
abrupt darkening outside the spotlight is not a salient
perceptual feature of the illusion. Thus, the algorithm’s
estimates probably do not predict human perception of
the background. One reason for this may be the fact
that we employed priors that enforce smoothly varying
illumination and do not model the possibility of sharp
illumination boundaries. This is a limitation that we
suspect could be overcome by employing illuminant
priors that enforce piece-wise rather than global
smoothness of the illumination, and exploring the effect
of incorporating such priors is of interest for future
work. Methods for specifying and computing with
these general types of priors are available (Geman &
Geman, 1984; Kersten, 1991; Li, 2001; Simoncelli,
2005). A second elaboration would be to relax the
assumption that the surface reflectances at each
checkerboard location are independent.

Across our contexts, we only manipulated the
luminance of the checkerboard contexts surrounding
the test. It is clear that geometric information also plays
a role in how the visual system segments an image into
different regions of illumination (Adelson, 1993, 2000;
Bloj et al., 2004; Boyaci, Maloney, & Hersh, 2003;
Gilchrist, 1980, 2006; Gilchrist et al., 1999; Hochberg &
Beck, 1954; Ripamonti et al., 2004; see also Lee &
Smithson, 2012). This includes cues to the three-
dimensional structure of the scene that might provide
information about how the illumination varies across
image locations as well two-dimensional image features
that might indicate illumination boundaries (e.g., the
spatial structure of junctions identified in the image).
Our priors do not model the three-dimensional
structure of objects nor the three-dimensional geometry
of illumination, nor does our likelihood describe the
relation between three-dimensional scenes and two-
dimensional images. Thus our algorithm is not sensitive

to cues about the three-dimensional structure of the
scene nor to geometric structure in the image other
than the distance between locations. For this reason, it
is clear a priori that our model will not account for the
type of geometric effects on lightness described in the
references listed above. Currently, our quantitative
understanding of such perceptual effects is still in its
relative infancy, as is our understanding of how
photometric and geometric information interact as the
visual system segments the image (but see Lee &
Brainard, 2011 for some initial work on the latter
question). As our understanding and ability to compute
evolves, it should be possible to develop Bayesian
models of lightness that incorporate additional geo-
metric factors (see for example Barron & Malik, 2012;
Romeiro & Zickler, 2010).

Test effect

A simplifying assumption often made in studying the
effect of context on lightness is that the test itself does
not substantially perturb the context. When correct,
this means that data collected across different test
luminances may be interpreted as characterizing a
single fixed context (Stiles, 1978). This assumption,
however, may not be secure. As discussed above, the
curvature in the psychophysical CTFs may be under-
stood as a perturbation of the context by the test itself.
Thus the test, rather than neutrally probing the effect of
the surrounding context on the visual system’s pro-
cessing of light at the test location, actually alters the
visual system’s state at that location. We think it is
important for theorists to keep this possibility in mind,
and note that this type of effect can be incorporated,
albeit imperfectly to date, into the type of Bayesian
model we develop here.

Relation to other work

The modeling approach we have taken here is part of
a broader program that aims to relate visual perfor-
mance to the solution of estimation problems that the
visual system must solve to convert ambiguous sense
data into useful perceptual representations (Brainard,
2009; Brainard & Maloney, 2011; Geisler, 2011;
Kersten, Mamassian, & Yuille, 2004; Knill & Richards,
1996; Morgenstern, Murray, & Harris, 2011; Purves &
Lotto, 2003; Rust & Stocker, 2010; Stocker &
Simoncelli, 2006; Weiss, Simoncelli, & Adelson, 2002).
Although we believe this is a useful way to approach
understanding lightness perception, it is not the only
approach. A complementary effort attempts to relate
perceived lightness to the action of psychophysical
mechanisms that abstract key features of the underly-
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ing physiology of the visual pathways. Examples of this
approach in the lightness domain include work by
Blakeslee and McCourt (1999), Blakeslee and McCourt
(2004), Chubb, Sperling, and Solomon (1989),
Radonjić et al. (2011), and Rudd and Zemach (2004).

Indeed, in our earlier report (Allred et al., 2012) we
showed that the parametric variation in the shapes of
the CTFs that we consider here is very well accounted
for by a model that that connects lightness to the
response of a saturating visual mechanism (Radonjić et
al., 2011). What that model did not provide is an
account of how to derive the response function
parameters for any context from a description of the
patch luminances in that context. Thus, it is not
possible to use that model to predict lightness for
contexts beyond those that were directly measured. The
current work, in contrast, focuses on how and why any
particular context exerts its influence on the CTFs. An
interesting direction for future research may be to try to
incorporate known features of visual physiology, such
as the fact that mechanisms have limited dynamic
range, into the formulation of otherwise optimal
estimation algorithms. Additional discussion of the
relation between computational and mechanistic ap-
proaches to understanding constancy is available
elsewhere (Brainard, 2004, 2009; Foster, 2011; Maloney
& Brainard, 2010; Pokorny, Shevell, & Smith, 1991;
Smithson, 2005).

Concluding remarks

The information available to the visual system
through the retinal image is ambiguous; any functional
understanding of visual perception must account for
how this ambiguity is resolved. Lightness perception
provides a model system for studying how the visual
system resolves ambiguity. Here we show that an
illuminant-surface estimation method that combines
image luminances with priors that capture environ-
mental statistical regularities can account for many of
the broad features of a large empirical data set on
lightness perception.

To evaluate our algorithm-based model, we fit
algorithm-based CTFs to CTFs obtained from judg-
ments of the perceived lightness of test patches
embedded in grayscale checkerboard contexts (Allred
et al., 2012). These checkerboard stimuli incorporated
the large variation in luminance that is a pervasive
feature of natural scenes (Heckaman & Fairchild, 2009;
Mury, Pont, & Koenderink, 2009; Xiao, DiCarlo,
Catrysse, & Wandell, 2002). In addition, the luminance
profile of the checks both near to and remote from the
central test patches was systematically manipulated.
The manipulations provided a simplified version of the
kind of spatial changes in illumination that occur in

real scenes. The algorithm-based model accounts for
the broad features of the data and some but not all of
the more detailed features of the data.

The performance of our algorithm is driven primarily
by priors over illumination and surfaces that it
incorporates. We choose simple parametric forms for
these priors, with the form of the illuminant being a
multivariate log normal that allowed expression of the
intuition that illumination varies more slowly over space
than surface reflectance. This is a reasonable point of
departure. More sophisticated priors would incorporate
spatial structure for both surfaces and illuminants and
characterize the nature of the spatial variation for both
in more detail than can be described by the first-order
correlation structure alone (Geman & Geman, 1984;
Kersten, 1991; Li, 2001; Simoncelli, 2005). Formulating
the priors over a three-dimensional representation of the
scene and allowing the likelihood to map between this
representation and the image data is a related and
important direction for future research (see, for example,
Barron & Malik, 2012; Romeiro & Zickler, 2010).

The prior parameters used to model the data were
obtained as those that provided the best model fit to the
psychophysical data. We refer to these as the derived
priors. The derived priors can be understood as those
that are brought to bear by the visual system, within the
context of our model and experimental stimuli (cf.
Brainard et al., 2006; Stocker & Simoncelli, 2006;
Brainard, Williams, & Hofer, 2008; Morgenstern et al.,
2011; Girshick, Landy, & Simoncelli, 2011). As such,
they provide an interpretable description of human
performance, again within the context of our model. In
particular, the derived priors characterize human
performance in the currency of the statistical structure
of natural scenes, and as such it would be interesting to
know how closely the derived priors match the priors
obtained directly from physical measurements of
natural scenes (see Girshick et al., 2011 for such
comparison in the perceptual domain of spatial
orientation and Allred, 2012 for a general discussion).
We are currently limited, however, in terms of what we
know about the relevant natural scene statistics.
Although there are several valuable data sets of
calibrated natural images now available, these image
data sets do not allow separate characterization
illuminant and surface reflectance statistics (e.g.,
Chakrabarti & Zickler, 2011; Foster, Nascimento, &
Amano, 2004; Heckaman & Fairchild, 2009; Mury et
al., 2009; Olmos & Kingdom, 2004; Parraga, Brelstaff,
Troscianko, & Moorehead, 1998; Tkacik et al., 2011;
van Hateren & van der Schaaf, 1998; Xiao et al., 2002).
Similarly there is work on the geometrical structure of
natural illumination fields (Debevec, 1998; Dror, Will-
sky, & Adelson, 2004; Morgenstern et al., 2011), but
translating the characterization provided by this work
to image plane statistics is nontrivial. As we obtain
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better measurements of the distribution of surface
reflectances and illumination intensities in natural
scenes, it may become possible to both improve upon
our choice of prior parametric forms and to make
informative comparisons between priors derived from
analysis of human performance and their counterparts
obtained directly from physical measurements.

Keywords: Bayesian, lightness/brightness perception,
luminance, high dynamic range display, illumination
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