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1                                  Chapter 11  

 Approaching Color with 
Bayesian Algorithms 

      Sarah     Allred      

 What is the goal of color vision? How ought we to think of color appearance? Under one 
view, the goal of vision is to maintain a stable representation of object properties across 
changes in the environment. This poses a challenge to the visual system, because the sen-
sory signal on which visual perception is based is ambiguous with respect to the physical 
properties of objects in the world. Thus, to maintain stable color appearance, the visual 
system must estimate what object was most likely to have caused the ambiguous sensory 
signal (Helmholtz 1910/  1924  ). In this chapter, I present a Bayesian approach to solving 
this estimation problem that relies on statistical regularities in the world to resolve the 
sensory ambiguity. This is a sensible idea: the human visual system evolved in this world, 
and thus its statistical regularities are likely to be of functional importance to vision 
(Attneave   1954  ; Geisler and Kersten   2002  ; Mamassian et al.   2002  ; Weiss et al.   2002  ). 

 Any functional understanding of vision has to deal with the problem of information 
loss between the distal object and its visual representation. In color vision, there are sev-
eral salient sources of information loss. First, there is ambiguity inherent in image forma-
tion, illustrated in Figure 11.  1  . In color vision, that ambiguity takes the form that the light 
reaching the eye from a surface j [C j ( λ ), sensory signal] confounds reflectance properties 
of the surface [S j ( λ )] with the properties of the illuminant [E  j ( λ )]. Color perception 
typically follows the properties of a surface rather than the illuminant. However, the sen-
sory signal that gives rise to color perception is ambiguous with respect to which surface 
gave rise to it; that is, infinitely many combinations of surfaces and illuminants could 
have caused any given sensory signal. Despite this ambiguity in the sensory signal, our 
perception is (usually) not ambiguous; that is, at any given time, we only perceive one 
color at a particular spatial location.  

 A second kind of information loss occurs because of the physiological properties of the 
photoreceptors. As illustrated in Figure 11.  1  , under normal light levels, human vision 
relies upon three different photoreceptor classes, L-, M-, and S-cones. Each cone type 
is most sensitive to a different wavelength of light; color vision relies on the comparison 
of the responses of these three cone types to a given sensory signal. Thus, rather than 
representing the intensity of each wavelength in the sensory signal, the photoreceptors 
can be characterized as giving three discrete intensity values (r j ). Despite this trichro-
matic representation of a continuous color spectrum at the earliest level of the physiology, 
a continuous color circle still captures many aspects of color experience. 
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1  Third, information loss occurs because of noise in the physiological system. 
Photoreceptors signal the presence of light to subsequent parts of the visual system 
through a change in electrical current flowing through the photoreceptor; that change is 
mediated by photopigment isomerization. When a photopigment absorbs light, its shape 
changes. This change in shape initiates a cascade of events that eventually alters the 
amount of neurotransmitter released by the photoreceptor, which in turn affects the 
responses of other neurons in the visual system. However, the responses of photorecep-
tors are noisy; that is, subsequently presented identical stimuli can cause different num-
bers of photopigment isomerizations. In addition, sometimes photopigments isomerize 
in the absence of light. In high-light conditions, photopigment isomerizations are domi-
nated by the light incident on the photoreceptors; however, at low illumination levels, 
isomerizations due to chance may be closer in magnitude to the response evoked by a 
visual stimulus. Particularly at low-light levels, photoreceptor noise can have interesting 
perceptual effects.        

   To perceive, one must guess   
 Although the ambiguities described here are particular to color perception, sensory ambi-
guity is fundamental to all visual perception. For any visual property (e.g., color, size, 
shape, distance, depth, gloss), reconstruction of the distal stimulus from the sensory sig-
nal is an underdetermined problem. In other words, there is no theoretical way to recov-
er the distal stimulus from the sensory signal without applying some sort of guessing rule, 
heuristic, or external constraint. Although some descriptions of visual processing leave 
these guessing rules unstated, any explanation of visual perception tied to a reconstruc-
tion of the distal stimulus requires guessing rules. These rules may be stated or unstated, 

     Fig. 11.1    Illustration of sensory ambiguity. (© Maria Olkkonen, 2011, reproduced here with 
permission.) (See also Plate 10.)    

Cj(λ)

Si(λ)

E(λ)

rj

L M S
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1 formulated implicitly or explicitly, described functionally or mechanistically, and imple-
mented qualitatively or quantitatively, but they are necessary for a complete characteriza-
tion of visual perception. To perceive, one must guess. Moreover, one set of guessing 
rules is not enough; visual constancy (or the ability to perceive an object the same way 
in different environments) requires that guessing rules change from environment to 
environment.  1   

 How ought the visual system to deal with this information loss? Given that the visual 
system must guess, how ought it to guess best? There are a number of possible answers. 
In this chapter, I describe a Bayesian computational approach to formulating these guess-
ing rules. To motivate the description and evaluation of the Bayesian approach, I first 
outline some perennial problems of visual perception. Second, I outline the general prin-
ciples of Bayesian algorithms. Importantly, the Bayesian approach to visual perception as 
described here does not aim for veridicality per se; rather, it aims to describe human per-
ception. Third, I illustrate the utility of the Bayesian approach to two specific cases, color 
constancy and color appearance. Finally, I compare and contrast the Bayesian approach 
to other ways of describing visual perception and I discuss the empirical, theoretical and 
philosophical advantages that accrue from a Bayesian approach.     

   The puzzle of constancy   
 As already outlined, the ambiguity in the sensory signal makes unambiguous perception 
a computational puzzle. However, visual constancy also raises a number of philosophical 
puzzles. For example, consider naïve realism. This is the idea that humans perceive 
directly the properties of objects in the world. Naïve realism says that perception of an 
object’s color and size should remain constant across changes in that object’s environ-
ment. After all, what has changed is the environment, not the object (or its properties). 
A banana seen on a green banana plant outdoors should appear to have the same color as 
a banana under the fluorescent light of a grocery store. A newspaper under partial shadow 
should appear to have uniform color. If naïve realism were correct — or, in other words, 
if it were true that humans had complete visual constancy because they directly perceive 
object properties themselves — visual constancy would be a computational puzzle but not 
a philosophical one. 

 However, a first philosophical puzzle arises from noting that humans demonstrably do 
not achieve complete visual constancy. In the case of color, empirical studies suggest that 
color constancy in relatively realistic environments is around 60 %  (see Shevell and 

1  As an example, consider the “guessing rule” of using local contrast rather than luminance to encode 
surface lightness of an object. Then consider two changes to the visual environment. In A, the illumi-
nation changes; for example, the intensity of the light source in the room is increased. In B, the illumi-
nation stays the same, but the object is placed on a darker surface, one with lower reflectance. Contrast 
coding would support lightness constancy in A, since the luminance ratio between the object and its 
surround has not changed. However, in B, application of contrast coding would make appearance 
inconstant; the object would appear lighter because the luminance ratio between the object and its 
surround has increased. 
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1 Kingdom   2008   for review). Furthermore, the degree to which humans (and animals) 
exhibit color constancy is highly dependent on the environment. Variables that affect the 
degree of color constancy between environments include the complexity of the environ-
ment (Fleming et al.   2003  ; Kraft et al.   2002  ; Schirillo   1999  ), scene geometry (Allred and 
Brainard   2009  ; Boyaci et al.   2003  ; Schirillo et al.   1990  ), material properties such as gloss 
(Xiao and Brainard   2008  ), and whether the environmental changes are in the illumina-
tion or in the surrounding surfaces (Allred and Brainard   2009  ; Arend and Spehar   1993a  , 
b; Kraft and Brainard   1999  ; Delahunt and Brainard   2004  ). Why does the visual system 
have incomplete constancy? And why is it so variable? 

 The puzzle of incomplete constancy is exacerbated by the fact that there are conditions 
under which individuals can make multiple perceptual judgments about the same stimu-
lus. The possibility of multiple judgments is clear through introspection, and is verified 
by empirical studies (Arend and Spehar   1993b  ; Blakeslee et al.   2008  ). For example, when 
one looks at a surface like a book under a sharp shadow, there is a sense in which it is clear 
that the cover of the book is all the same color, but there is also a sense in which the part 
of the book under shadow seems darker. Thus, multiple judgments are made: the color of 
the book looks to be the same and also appears to vary. A silver dollar seen at an angle can 
be judged both as elliptical and as circular. A large object (like a car) seen at a distance is 
experienced both as being large and as being smaller than it is when it is viewed up close. 

 That multiple judgments about the same stimulus can be made under some conditions 
is clear, both from introspection and from empirical studies. Less clear is the characteri-
zation of when multiple judgments can be made — are there only certain circumstances 
when this can happen, or is it always possible? Consider again the book under shadow. 
Are there some shadows under which the book appears only one color? Are there some 
distances or objects for which the object looks exactly the same despite changes in its 
distance or orientation? The literature is murky on this point. Particularly in the cases of 
color, there are times when it seems only one judgment can be made; that is, even when 
observers are instructed to make multiple judgments, they can make only one (Arend and 
Spehar,   1993a  ; Ripamonti et al.   2004  ). However, there are also circumstances in which 
observers can comfortably make multiple judgments (Arend and Spehar   1993b  ; Blakeslee 
et al.   2008  ). Why should it be the case that multiple judgments are sometimes, but not 
always, possible? Is it possible to predict the circumstances under which multiple judg-
ments are possible? 

 As outlined from both computational and perceptual perspectives, the puzzles of con-
stancy are threefold. First, given the ambiguity in the sensory signal, how ought the visu-
al system to arrive at an unambiguous percept? Second, is there a principled way to 
predict when that ambiguity will be resolved veridically? That is, is there a principled way 
to predict the extent to which humans achieve color constancy in different environments? 
Finally, is there a principled way to predict the circumstances under which multiple judg-
ments of color appearance can be made; and, when multiple judgments can be made, can 
one assert whether a given judgment is perceptual or cognitive? In the following sections, 
I describe an answer to these questions that relies on Bayesian statistical theory. In the 
end, I argue that using a Bayesian approach facilitates answers to the first two questions 
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1 by providing a quantitative account of empirical data. I also argue that the success with 
which Bayesian algorithms resolve sensory ambiguity and predict variable constancy 
points to several ways one might think about answering the latter question of multiple 
judgments. To do so, I first describe the general principles of Bayesian algorithms.     

   General principles of Bayesian algorithms   
 Any Bayesian algorithm makes an optimal interpretation of some set of data. Here 
Bayesian algorithms are applied to the problem of color: the optimal interpretation is a 
judgment about color and the data are some parameterization of a sensory stimulus (e.g., 
values for the isomerization rates of different photopigments in response to incident light 
reflected from a colored surface). Importantly, as described here, the Bayesian approach 
aims to predict human perception rather than veridicality per se. In this sense, the 
Bayesian approach to color perception is distinct from many other computational 
approaches. Many computational approaches aim for veridicality (either implicitly or 
explicitly); that is, they aim to recover accurately the distal object from the sensory signal 
(Retinex is an example, see Land and McCann   1971  ). However, as we will see, the Bayesian 
framework is absent the notion that optimality requires veridicality. As formulated spe-
cifically in the context of color perception, we can think of a Bayesian algorithm as guess-
ing what state of the world (the  optimal  interpretation, as explained below) caused the 
sensory signal that reaches the eyes (the data). Keep in mind, however, that this optimal 
guess may not be the one that correctly describes the physical properties of the stimulus. 

 To illustrate the process by which the Bayesian algorithm makes this guess, consider the 
following simple example. Suppose the world consists of a single object comprised of a 
single surface that reflects only one wavelength of light. In this scenario, which wave-
length is reflected can be ignored, but the percentage of light reflected (surface reflect-
ance) is the relevant characteristic of the state of the world, and one that can vary from 
surface to surface. The datum from which the algorithm must guess this object’s surface 
reflectance is a single value, the intensity of light that reaches the eye. As illustrated in 
Figure 11.  1  , the intensity of light reaching the eye (the datum) is a product of the reflect-
ance of the surface and the light that is available to be reflected (the illuminant). The 
Bayesian algorithm must take the single datum (the intensity value) and make its best 
guess about the state of the world (the reflectance of the object and the intensity of the 
illumination) that caused the datum. In other words, the Bayesian algorithm must take 
one value (intensity) and guess two values (surface reflectance, illumination). Now sup-
pose, in this single surface world, that illumination changes while the reflectance of the 
object stays the same. This would change the datum (the intensity of the light reaching 
the eye). If the algorithm predicts the reflectance to be the same in both illumination 
contexts, then the algorithm predicts constancy; if, on the other hand, the algorithm pre-
dicts different reflectance values in the two illumination contexts, then the algorithm 
shows a failure of constancy. 

 How do Bayesian algorithms arrive at an optimal interpretation of the data? First, the 
algorithm computes the probability of each possible state of the world conditional on the 
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1 data at hand. In the one-surface world, this is every combination of reflectance and illu-
minant (state of the world) that could have caused the observed intensity of light (datum). 
For example, one possible state of the world is a high illuminant and low surface reflect-
ance, another possible state of the world is a low illuminant and a high surface reflectance. 
This probability distribution — the probability of each possible state of the world given 
the data — is called the posterior distribution. 

 This posterior distribution is generated by multiplying two other probability distribu-
tions — the  likelihood  and the  prior . The  likelihood  is the probability that the datum would 
be observed given each possible state of the world. For example, suppose my datum is 10 
units. How likely is a sensory signal of 10 units if the state of the world is a reflectance of 
0.1 and an illuminant of 100? The value is calculated using a likelihood function; concep-
tually, the likelihood function captures both sensory noise and the ambiguity inherent in 
image formation. In the one-surface world, for example, likelihood values will be high for 
states of the world that are consistent with the data (e.g., reflectance of 0.1 and illuminant 
of 100, or reflectance of 1 and illuminant of 10) and low for states of the world that are 
inconsistent with the data (e.g., a reflectance of 1 and an illuminant of 10,000, or a reflect-
ance of 0.01 and an illuminant of 1). The exact value of the likelihood depends on the 
sensory noise. If there were no sensory noise (for example, if photoreceptors responded 
exactly the same every time they were stimulated by a given number of photons), only 
states of the world perfectly consistent with the datum would have a non-zero likelihood. 
Furthermore, all consistent states of the world would have equal likelihood. In contrast, 
large sensory noise permits higher likelihood values for reflectance-illumination combi-
nations that are not consistent with the data. The precise formulation of the likelihood 
varies with the complexity of the algorithm, but for color perception, likelihood functions 
might utilize information about phototransduction noise, cone isomerization rates, or 
cone metamerism. Importantly, there are often multiple states of the world with identical 
likelihood values; this is another way of saying that the data alone are ambiguous with 
respect to what object(s) caused them. 

 The  prior  is the probability that any given state of the world exists to begin with, inde-
pendent of the data. This part of the Bayesian algorithm captures information we have 
about the statistics of the world. In our one-surface world, the prior would contain two 
one-dimensional probability distributions, one for surface reflectance and one for illumi-
nants. If there were more dark surfaces than light surfaces in the world, for example, the 
prior probability for surfaces with low reflectance would be greater than the prior prob-
ability for surfaces with high reflectance. Intuitively, the prior can be thought of as the 
guessing rules to resolve the sensory ambiguity of the likelihood. Next, the posterior 
probability — the probability of each possible state of the world, given the data — is com-
puted by multiplying the likelihood of each state of the world by the prior probability of 
each state of the world.  2   

2  The exact values of the likelihood and prior depend on their specific characterization; this is often a 
statistical distribution with a known probability density function. In principle, values are normalized 
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1  The final step in making an optimal estimation is to convolve the posterior distribution 
with a loss function, sometimes called a cost function or utility function. This function 
describes the cost associated with incorrectly estimating any particular state of the world. 
In the one-surface world, for example, if there were a high cost for guessing that a surface 
was very white when it was actually closer to black, the cost function would shift the opti-
mal estimate towards a darker surface than the posterior distribution alone would yield. 
Intuitively, the loss function captures information about task strategy. The convolution 
of the posterior distribution with the loss function yields the expected Bayes’ utility. The 
optimal interpretation of the data (in the one-surface world, the algorithm’s final guess 
about reflectance and illuminant) is the state of the world with the highest expected 
Bayes’ utility. Many Bayesian models, including all of those presented in this paper, have 
a simple, uniform loss function, and thus the optimal interpretation is driven entirely by 
the posterior. However, strategic effects can be modeled using the loss function.     

   A Bayesian model of color constancy   
 To illustrate the value of the Bayesian approach, consider the case of color constancy. For 
the color appearance of an object to be useful, it should be approximately constant; that 
is, it should correlate with reflectance properties of that object across changes in the envi-
ronment. Such changes could include the intensity and chromaticity of the incident illu-
mination and the reflectance properties of surrounding objects. As discussed previously, 
the human visual system is approximately color constant, but it has been difficult to 
predict the extent of that constancy in different environments. Recently, Brainard and 
colleagues (  2006  ) proposed a Bayesian model of color constancy that provided a good 
explanation for the color appearance of surfaces under different illuminants. This model 
predicted both successes and failures of color constancy. An overview of the model is 
presented here; for detailed information, see Brainard et al. (  2006  ). 

 To understand the model, recall that any Bayesian algorithm estimates what state of the 
world most likely caused a particular set of data. For the color constancy algorithm, the 
“state of the world” is characterized as a mathematical approximation of the reflectance 
of a series of surfaces and the chromaticity of one uniform illumination. The data are 
conceived as the isomerization rates of the three photoreceptor types. The likelihood 
function then captures the mapping between states of the world (surfaces/illuminant) 
and the data (isomerization rates). This mapping took the form of modeling the sensory 
signal as the multiplication of the surface reflectance vectors by the illuminant chromatic-
ity, using a biological model of the absorption spectra of the different photoreceptor 
classes to estimate average isomerization rates, and then perturbing those isomerization 
rates with noise (see Brainard et al.   2006   for the mathematics). The likelihood function 
characterizes the probability with which any combination of reflectance and illuminants 
would have caused the modeled isomerization rates of the cone classes. Intuitively, this 

by a constant. In practice, we are often more interested in knowing relative probabilities than absolute 
probabilities, and the constant is ignored. 
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1 likelihood function captures knowledge of image formation and early sensory processing 
of the cones. 

 As in the one-surface world, however, multiple combinations of reflectance and illumi-
nant are equally consistent with the data. To make an optimal estimate or guess, the 
algorithm uses the prior; that is, the probability with which any particular reflectance or 
illuminant is likely to occur in the first place. To create the prior for surfaces, Brainard 
et al. (  2006  ) first assumed that surface reflectance functions are well approximated by a 
three-dimensional linear model. This assumption is frequently used in rendering applica-
tions (e.g., 3D computer graphics in video games or movies). The basis functions for the 
linear model were obtained via statistical methods from empirically measured surface 
reflectance functions. The same process was repeated to characterize illuminant spectral 
power functions. The average chromaticity of the illuminant prior was set as the CIE 
illuminant D65.  3   The remaining parameters determining the relative probability of other 
chromaticities compared to the mean were estimated from a set of measured daylight 
spectra. There are several steps of mathematical simplification, but these priors capture 
the intuition that the visual system expects a distribution of illuminants that occurs under 
various daylight conditions, and it expects surface reflectances that are likely to occur in 
the natural world. 

 To get the posterior distribution, the prior is multiplied by the likelihood, and the esti-
mate of scene illuminant and reflectance of the surfaces within the scene is the maximum 
of the posterior distribution. Thus, for any arbitrary scene, the algorithm can estimate the 
illuminant and reflectance of surfaces within the scene. 

 The computational challenges involved in arriving at an unambiguous prediction of 
reflectance and illuminant chromaticity are non-trivial. However, the fact that an algo-
rithm can pick one interpretation out of an infinite number is not sufficient to recom-
mend the algorithm; the chosen interpretation should be sensible. To evaluate the success 
of the algorithm, it is important to compare its predictions to human judgments of color 
appearance. To do so, Brainard et al. (  2006  ) compared model predictions to data col-
lected by Delahunt and Brainard (  2004  ). In that experiment, observers successively 
viewed seventeen simulated scenes (see Fig. 11.  2  ) and adjusted a test spot within the scene 
until it appeared achromatic (that is, lacking in color, except for white, gray, or black). 
The background reflectance and the illuminant were both varied between scenes. In gen-
eral, Delahunt and Brainard (  2004  ) reported much higher degrees of color constancy 
when the illuminant alone was varied than when both the illuminant and the background 
reflectance were varied.  

 Any comparison of algorithm estimates to human perception involves an explicit link-
ing hypothesis; that is, it requires a way to relate algorithm estimates of scene parameters 

3  This is considered a “standard daylight illuminant”; purchasers of light bulbs aimed at full-spectrum 
or daylight illumination may see this notation on their packaging. Please note: in the text “CIE” stands 
for Commission Internationale de l’Éclairage. 
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1 to human estimates of color perception. Here I discuss model estimates of illuminant 
reflectance and illuminant chromaticity estimated from human achromatic settings.  4   

 Model estimates of illuminant intensity tended to agree well with those inferred from 
human observers’ achromatic points. Interestingly, the model’s failures to predict veridi-
cal illuminant intensity were often accompanied by failures of human color constancy. 
There are an infinite number of combinations of surface reflectance and illuminants that 
could give rise to the sensory signal as modeled in the paper. On average, the algorithm 
predicted illuminant chromaticity correctly in the same contexts that elicited veridical 
judgments of illuminant chromaticity from human observers. 

 One of the puzzles outlined above is the variability of color constancy in different envi-
ronments. Here the Bayesian algorithm predicts that variability. Interestingly, the way it 
does so provides some insight. The algorithm predicts failures of constancy in contexts 
where the illumination profile is relatively improbable according to the prior distribu-
tion. One experimental example is an environment with purple illumination. According 
to the prior, purple illumination is very improbable. When a “purple” sensory signal is 

4  The measure of constancy in these experiments is complicated and illustrates the philosophical issues 
at hand. Constancy implies that an achromatic surface will continue to appear achromatic under dif-
ferent illuminations. Constancy indices typically reflect the degree to which experimental settings 
conform to that actual achromatic surface. However, there is no principled reason to stipulate the 
illumination under which achromatic settings reflect “real” achromatic reflectance properties. To 
increase the chances that any reported failures of constancy were not simply failures to characterize the 
“real” achromatic surface, Brainard et al. used numerical search to infer the reflectance properties of 
an achromatic surface that minimized the constancy errors across all 17 contexts simultaneously. 
Although observers actually adjusted knobs until the light reaching their eyes appeared achromatic, 
this process of inferring the reflectance properties of an achromatic surface allows characterization of 
the human observers’ estimates of the illuminant chromaticity. The algorithm estimates illuminant 
chromaticity. Achromatic settings in different contexts can be predicted from these estimated illumi-
nant chromaticities. The differences between actual and predicted achromatic chromaticities are the 
data plotted in Brainard et al. (    2006  ). This analysis is complicated. For simplicity and because estimates 
of illuminant chromaticity are at the heart of both model and human calculations, I refer to model 
and human comparisons of illuminant chromaticity rather than predicted and actual achromatic 
characteristics. 

   Fig. 11.2    Examples of four stimulus configurations viewed by human observers in Delahunt and 
Brainard (  2004  ). Subjects adjusted a test patch at the location indicated by the black square 
until it appeared achromatic. (Reproduced from Brainard, David H., David R. Williams, and Heidi 
Hofer, Trichromatic reconstruction from the interleaved cone mosaic: Bayesian model and the 
color appearance of small spots, Journal of Vision 8(5): pp. 11–23 © 2008 Association for 
Research in Vision and Ophthalmology, with permission.) (See also Plate 11.)    
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1 encountered, therefore, odds are that the “purpleness” arose from a purple surface rather 
than a purple light. The prior quantitatively implements that probability. Because of this, 
the Bayesian algorithm predicts relatively low constancy for purple illumination; that is, 
it predicts that observers will interpret surfaces under a purple light as being more purple 
than they really are. This prediction agrees with observer estimates. Thus, the Bayesian 
algorithm suggests that observers will exhibit low degrees of constancy when the actual 
state of the world is an improbable one. 

 To summarize, the Bayesian model of color constancy does four things. First, the 
model solves the computational puzzle of arriving at one estimate of color from the infi-
nite number of possibilities presented by the sensory signal. Second, the solutions at 
which the model arrives predict human perception well. Third, the model predicts the 
variability in human color constancy. Finally, the model provides a principled reason for 
that variability; that is, constancy is worse when the visual system encounters relatively 
improbable events.         

   A Bayesian model of color appearance   
 There are a number of unresolved issues surrounding the mapping between the color 
appearance of stimuli and the physiological responses early in the visual system to those 
stimuli. One example is the way in which the retinal photoreceptor tiling in an individual 
is related to that individual’s phenomenal color experience. For example, it is an empiri-
cal observation that the ratio of L to M cones varies substantially between subjects, as does 
the pattern in which they are arranged (Hofer et al.   2005a ,  b  ). The ratio also varies by 
location in the retina even with individual subjects. The comparison of different cone 
classes is necessary for color vision. If color appearance at a particular retinal location is 
dependent on the comparison of L and M cone responses in that location, then this inter- 
and intra-subject variability raises the perplexing question of how color appearance is 
relatively stable across retinal location and between observers (see MacLeod   2010   for 
discussion). 

 How should the variability in photoreceptor mosaic affect the color appearance in an 
ideal observer? Brainard et al. (  2008  ) took advantage of recent advances in the experi-
mental technique of adaptive optics to address this question. Adaptive optics has made 
it possible to present very small spots of light to the retina of awake, behaving human 
observers. These spots are so small and well characterized that there is a high probability 
that a single stimulus falls on a single cone. Further, extensive imaging of individual 
human retinas has made it possible to estimate the photoreceptor tiling in individual 
observers. These techniques are complicated and explaining them is beyond the scope of 
this chapter (see Hofer et al.   2005a   for discussion). Here the results are summarized. 

 Hofer et al. (  2005a  ) presented monochromatic stimuli to observers after imaging their 
photoreceptor mosaics. Examples of differences between photoreceptor mosaics are 
shown in Figure 11.  3  , where the variation is qualitatively obvious. For example, observer 
HS had primarily M-cones (colored green), while observer BS had primarily L-cones 
(colored red).  
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1  After the flashes were presented, observers reported the apparent color of any flashes 
that were sensed. Not all flashes were detected. Hofer et al. (  2005a  ) observed both intra-
observer and inter-observer variability in reported color. For example, the retinal loca-
tion of the presented stimulus affected the response of individual observers, such that the 
same stimulus could be named a different color depending on where in the retina it was 
presented. Figure 11.  4   (left panel) shows the variability in color names for a 550-nm light. 
Monochromatic 550-nm light presented under normal conditions is named green, yet 
under conditions that stimulated a single cone, observers gave up to nine different color 
names to the same physical stimulus. Moreover, the relative frequency of different color 
names varied between observers. An example of this variability is seen in Figure 11.  4  , 
where observer YY used blue much more frequently than did observer BS, though they 
both “saw” the same 550-nm stimulus.  

 What can account for this pattern of results? To further understand the complexity of 
the pattern, first consider that although the portions of the retina imaged contained some 
S-cones, 550-nm light does not elicit responses from S-cones. Thus, it is likely that at 
most two different physiological responses (either M- or L-cone) elicited the full range of 
color names. Second, a salient feature of the data is that a number of stimuli were report-
ed as achromatic (see Fig. 11.  4  , top panel), although every stimulus was monochromatic 
and stimulated only one cone. The traditional view in color science is that stimuli appear 
achromatic when all three cone classes are stimulated equally. Taken together, as Hofer 
et al. noted (  2005a  ), these results show that stimulating a single cone type resulted in phe-
nomenally different experiences. This provides a challenge for theories of color appear-
ance that equate stimulation of a particular cone class with an elemental sensation. 

 Comparing the individual photoreceptor mosaics and the color names (Fig. 11.  3   and 
Fig. 11.  4  ) does not present an immediately obvious explanation for the results. To account 
for the results, Brainard et al. (  2008  ) formulated the color naming task as the output of a 
Bayesian model that estimated the most likely color from a noisy photoreceptor array. 

 To understand this Bayesian algorithm, consider again the process of computing the 
optimal interpretation (chromaticity of the stimulus, mapped to a color name) from a set 

   Fig. 11.3    Illustration of a small part of the photoreceptor mosaic for five subjects. Retinas 
were imaged using adaptive optics techniques described in Hofer et al. (  2005a  ). (Reproduced 
from Brainard, David H., David R. Williams, and Heidi Hofer, Trichromatic reconstruction from 
the interleaved cone mosaic: Bayesian model and the color appearance of small spots, Journal of 
Vision 8(5): pp. 11–23 © 2008 Association for Research in Vision and Ophthalmology, with 
 permission.) (See also Plate 12.)    
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1 of data (in this case, the expected mean isomerization rates of the cones in each individ-
ual’s retina after accounting for the expected blur due to the optics of the eye). The 
known features of the retina and physiological properties of different photoreceptors 
were used to model the likelihood. As with the color constancy model, the key feature of 
the model is the prior. The prior here incorporates several observations about natural 
images. First, the intensity in images tends to vary slowly over space. Second, the isomer-
ization rates of L-, M-, and S-cones at a given location tend to be highly correlated. This 
occurs both because of the properties of images and the properties of the cones them-
selves. The math required to implement these ideas is complicated, but the essence is that 
the prior incorporates intuitions about correlations across space and color. 

 The Bayesian algorithm then estimated the most likely ideal image given the photore-
ceptor responses. To convert the algorithm output to a form that could be directly com-
pared with psychophysical observations, Brainard et al. (  2008  ) used a standard map of 
chromaticity to color names. The model estimates are shown in Figure 11.  4   (right panel). 
The model predicted the variability between subjects both in terms of the colors named 
and the proportion of colors called achromatic. 

 In this case, a new experimental technique (adaptive optics) revealed situations in which 
our intuitions about color appearance are incorrect; the appearance of small spots is  not  
constant across retinal location within an observer, and the appearance of small spots is  not  
constant across observers. The Bayesian model that estimates the most likely ideal image 
from expected isomerization rates of cones is in agreement with the empirical data. 

 At first glance, it may seem surprising that intuitions about color appearance are so 
wrong; why do we believe color appearance to be stable across retinal position if it is not? 

   Fig. 11.4    Actual (left) and predicted (right) color names for presentation of 550-nm spots. 
The observers’ task was to report the color of each spot they judged nameable. The histogram 
shows the proportion of total presentations named the illustrated color. (Reproduced from 
Brainard, David H., David R. Williams, and Heidi Hofer, Trichromatic reconstruction from the 
interleaved cone mosaic: Bayesian model and the color appearance of small spots, Journal of 
Vision 8(5): pp. 11–23 © 2008 Association for Research in Vision and Ophthalmology, with per-
mission.) (See also Plate 13.)    
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1 The answer lies again with probability. Spots of light this small are very unlikely. They are 
so unlikely, in fact, that they would never have been encountered over the course of our 
evolutionary history. Although the priors in this algorithm were designed using the sta-
tistics of common natural images, here they are used to predict the appearance of very 
unlikely stimuli. A good test of a model is whether it can generalize to predict the appear-
ance of novel stimuli; in this case, Brainard et al. (  2008  ) simulated the cone responses 
to more typical, larger stimuli. The same model that predicted variability in color appear-
ance to “unlikely,” highly localized, monochromatic stimuli revealed stability of color 
appearance across less localized stimuli. For example, the ideal images for simulated 
isomerization rates of cones to larger spots of uniform color, or to low-frequency sinusoi-
dal color gratings (wide stripes of color) were stable across subjects and close to veridical. 

 To summarize, the Bayesian model of color appearance of very small spots also address-
es the puzzles described in the introduction. First, it solves the computational problem of 
arriving at a single prediction of color from an ambiguous sensory signal, in this case the 
isomerization of a single cone. Second, the color names chosen as optimal by the model 
are in agreement with the color names utilized by human observers. Third, this algorithm 
also predicts the inter- and intra-observer variability in color names. Fourth, as with the 
previous model, the way in which the model predicts this variability provides useful 
information. In order to predict the variability, the model assumes that the visual system 
is attempting to guess what stimulus was in the world. There is always ambiguity in the 
sensory stimulus. The model assumes that the visual system applies the same priors 
(guessing rules) to judging the appearance of very small spots as it would apply to judging 
the appearance of larger, more typical stimuli. In other words, the prior says that highly 
localized stimulation of a single cone is very, very unlikely. When it receives sensory input 
consistent with a single cone being stimulated, the visual system will guess that parts of 
the sensory signal were due to noise. The visual system will guess (because of the priors) 
that the stimulus presented was larger and more chromatically correlated than it actually 
was. An important test is that the priors that predict the appearance of very small spots 
also predict the veridical appearance of more typical stimuli. Thus, the priors that predict 
the appearance of small spots tell us something about the guessing rules that humans 
employ under more normal viewing conditions; they provide a principled explanation 
for the variability in human color perception.         

   Discussion   
 There are multiple ways to approach the problem of predicting visual perception from 
the sensory signal. The Bayesian approach described here is an example of the computa-
tional approach as characterized most famously by Marr (  1982  ). Other common 
approaches are the mechanistic approach and one I will term the piecework approach. In 
the mechanistic approach, parts of the model are thought of as abstractions of pieces in a 
real visual system. One understands color vision (or visual perception) by understanding 
the physiology that underlies it in the mammalian system. Typically, the foundation of 
mechanistic models is the responses of neurons in early visual areas (such as the retina, 
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1 lateral geniculate nucleus (LGN), and primary visual cortex) to simple, well-controlled 
visual stimuli whose dimensions can be well characterized. Mathematical approxima-
tions of typical neural processes are used to guide model development (at least conceptu-
ally; for an example, see ODOG — oriented difference of Gaussian filters — in Blakeslee 
and McCourt   1999  ). This approach has achieved remarkable success in predicting per-
ception for certain types of scenes (e.g., with uniform illumination). However, it is unclear 
as yet whether it will generalize to more complicated scenes where the image data are less 
easily parameterized with respect to neural responses. One can think of this type of 
approach as a ground-up model that takes as input an idealized retinal image, and uses 
the early physiological treatment of the sensory signal as the “guessing rules” to solve the 
ambiguity in image formation. 

 A second approach, which I have termed piecework, is to first segment a scene (or an 
idealized retinal image) using a higher level representation of the image or heuristics and 
then apply segment-specific rules to solving sensory ambiguity. A scene could be divided 
into a region of low illumination or high illumination, or segregated into regions repre-
senting different depths. An example of this is anchoring theory (Gilchrist et al.   1999  ). 
The Gestalt principles of perceptual organization can be considered part of this tradition. 
Theories like this can explain a number of perceptual phenomena (Gilchrist et al.   1999  ). 
One drawback to this type of approach is that it is usually post hoc, and it is not clear how 
a particular approach should generalize to novel images. As Weiss et al. (  2002  , 603) state 
with reference to the motion stimuli, “Because these rules are not formulated directly on 
image measurements, it is not clear how one should generalize them for application to 
arbitrary spatiotemporal stimuli.” 

 A third approach is computational. The idea here is to consider perception as an infor-
mation processing task and to consider the optimal way to solve that task. This approach 
is agnostic as to physiological implementation. The particular computational approach 
described here is Bayesian, although some of the advantages described here accrue to 
any well-conceived computational approach. One advantage of most computational 
models is that they provide testable predictions. For example, most computational mod-
els take as input some set of numbers characterizing a visual image, and yield as output 
another set of numbers describing the estimated characteristics of that scene. In theory, at 
least, these estimates can then be compared quantitatively to human perception. Unlike 
more qualitative theories of visual perception, this allows for interpretable evaluation of 
models. 

 In addition to the more general advantage of providing testable predictions, two more 
advantages accrue to a specifically Bayesian computational approach: (1) compared to 
other models, Bayesian models tend to be more easily generalizable; (2) Bayesian models 
require an explicit mathematical representation of the assumptions that go into every 
modeling approach. The “guessing rules” that must underlie every modeling approach 
(even if they remain unstated) are formulated explicitly as the priors. 

 In discussing the Bayesian approach, it is important to recognize that it is not a refuta-
tion of the ideas underlying either the mechanistic approach or the piecework approach. 
In fact, many likelihood functions are based on the same building blocks that go into 
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1 mechanistic models. With regard to the piecework approach, one can think of the priors 
as a way of mathematically formulating heuristics or as an alternative description of 
Gestalt principles. All three approaches are complementary. 

 The Bayesian modeling approach is used in many different fields. In the end, Bayesian 
statistical theory provides an optimal estimate given a set of assumptions. Those assump-
tions are mathematically formulated as the likelihood function, the prior, and the loss 
function. In the context of Bayesian modeling of color, the priors have been interpreted 
here as a formalization of the guessing rules used to resolve sensory ambiguity. The priors 
used in these models capture something interesting about the statistics of the natural 
world. The priors, thus framed, are meant to characterize the salient features of the world 
in which the human visual system evolved. However, any of these Bayesian models as 
constituted could be generalized to include a prior that is less evolutionary in nature. For 
example, priors could be modified to include such variables as the prevalence of a par-
ticular stimulus within an experimental session. In the models presented here, the loss 
function was very simple and never invoked explicitly. However, the loss function could 
be modified to include the experimental cost or benefit of making different kinds of 
errors within an experiment. Manipulating the expected frequency of a stimulus and the 
reward associated with different patterns of responses have been shown to change behav-
ioral responses (Hudson et al.   2007  ; Knill   2007  ). Bayesian modeling that incorporates 
such stimulus changes into the prior and such reward contingencies into the loss function 
has successfully explained behavioral responses to certain types of visual stimuli (Knill 
  2007  ), although experiment by experiment priors and loss functions have not yet been 
applied to color perception. 

 The computational approach described here differs from the mechanistic approach in 
one fundamental way. Although the Bayesian approach can functionally solve the prob-
lem of sensory ambiguity, it does not speak directly to the question of neural implemen-
tation or processing. Should a Bayesian model perfectly describe perception, it would not 
constitute evidence that the brain has circuits devoted to multiplying probability distri-
butions, or that quantities such as prior probabilities are represented explicitly at some 
neural locus (although some research has suggested this, see Ma et al.   2006  ). Of course, 
the models described here do incorporate knowledge of the human visual system in the 
likelihood. However, the Bayesian approach is best thought of as a way to articulate 
cogently the relationship between assumptions and results, and as a good way to frame a 
complicated problem. 

 Although the algorithms presented provide estimates of color appearance that are in 
broad agreement with human data, the agreement is not perfect. There are several possi-
bilities for the discrepancy. To compute likelihood and prior probabilities in a timely 
fashion, convenient forms of probability distributions are sometimes used. In each model, 
choices are made for how to parameterize scene variables. For example, in the constancy 
model, the data are weights on basis functions that describe reflectance and illuminant. In 
the color appearance model, the data are expected isomerization rates of cones. Each of 
these parameterizations requires assumptions and these affect the results. However, in 
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1 the case of the likelihood, the data generation process and scene parameters are often well 
understood; for example, isomerization rates of cones have been measured, and the 
optics of the eye are well characterized (Wandell   1995  ; Wyszecki and Stiles   1982  ). Given 
that the likelihood function is usually well constrained, it is often the choice of the priors 
that determines the model estimates; thus, lack of agreement between model estimates 
and human data may lie with the choice of priors. In each model presented here, the pri-
ors are highly simplified characterizations of the natural world. In many cases, they con-
tain known errors that are tolerated for computational reasons. In fact, given the 
simplicity of the priors and the statistical complexity of images, the degree to which the 
models do explain human perception is somewhat surprising. 

 However, despite the simplifications and limitations described above, the Bayesian 
approach to characterizing visual perception and constancy is appealing on broad empir-
ical, theoretical, and philosophical grounds. 

 Empirically, Bayesian estimates are in good agreement with human visual perception in 
many different domains. Here I have described in detail results from two models. Bayesian 
models can also account for the speed and direction of motion perception (Stocker and 
Simoncelli   2006  ), perceptual phenomena associated with vision at low-light levels 
(Manning and Brainard   2009  ), shape perception (Knill   2007  ), perceptual bistability (Van 
Ee et al.   2003  ), and Bayesian approaches are being applied to a host of perceptual phe-
nomena (see Kersten and Yuille   2003  ; Knill and Richards   1996  ). Moreover, Bayesian 
models are typically more parsimonious than other models, requiring fewer parameters 
to describe human perception under a wide range of conditions. 

 Theoretically, Bayesian models are easily generalizable. To make predictions about 
more complex stimuli, it is only necessary to add more distributions to the likelihood and 
probability functions, rather than engaging in  de novo  model construction. This modu-
larity is useful. Estimates of object properties can be compared quantitatively to human 
performance and the effect of each intuition instantiated in the prior can be measured. 
For example, in the Bayesian model of color constancy (Brainard et al.   2006  ), the initial 
model that drew on the measured daylight prior exhibited some notable failures to pre-
dict human performance. Subsequently, Brainard et al. (  2006  ) derived the prior that 
provided the best possible fit to the data. This prior was considerably broader than the 
daylight prior that was originally used. Given that the likelihood is well constrained, and 
the functional form of the prior is defined, the strategy of determining what prior param-
eters best account for the data can provide insights into visual system processing (Stocker 
and Simoncelli   2006  ). The empirical success of Bayesian models does not require that the 
brain represent probabilities in the same way that the models do. However, if the priors 
that work best in different models all seem to share a critical feature (viz., representation 
of statistics of natural images), this may suggest that those statistics are relevant to the 
neural substrates underlying perception. 

 Finally, although Bayesian algorithms are themselves agnostic to philosophical ques-
tions, an interested party might make some observations about the nature of visual per-
ception from the assumptions that are required for Bayesian algorithms to make estimates 

12-Hatfield and Allred-Chap-11.indd   22712-Hatfield and Allred-Chap-11.indd   227 5/15/2012   6:01:29 PM5/15/2012   6:01:29 PM

OUP UNCORRECTED PROOF – REVISES-PROOF, 15/05/2012, CENVEO



ALLRED228

43

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1 of color appearance that agree with human estimates of color appearance. Specifically, it 
is interesting to note how the Bayesian algorithms presented here predict both successes 
and failures of constancy (Brainard et al.   2006  ; Stocker and Simoncelli   2006  ; Weiss et al. 
  2002  ). Given that the likelihood is well constrained, it is the parameters of the priors that 
control model success. In multiple cases, perceptual phenomena that have seemed to 
indicate flawed or suboptimal perception have been recast as the output of a rational 
perceptual system. The model that predicts color constancy also predicts failures of con-
stancy when they occur (Brainard et al.   2006  ). The model that predicts the seemingly 
incomprehensible pattern of responses to very small spots of light also explains percep-
tion of more typical color stimuli. A model that explains veridical speed perception in 
high-light conditions also predicts various motion illusions under low-light conditions 
(Weiss et al.   2002  ). The critical importance of the priors in predicting human perception 
in a wide range of contexts suggests three interrelated points. 

 First, when some property of a prior shows itself to be empirically useful in very differ-
ent circumstances, the philosophical implications of that property are worth considering. 
Specifically, because the required priors in each of the presented models have the com-
mon feature of capturing the statistics of natural images, a philosophical account of visu-
al perception should take seriously the notion that the visual system is “designed” for 
veridical perception in environments considered important from an evolutionary point 
of view. An important goal of philosophical and psychological accounts of perception has 
been to find correspondence between parameters of physical objects (e.g., reflectance, 
spatial extent) and parameters of the relevant perceptual space (e.g., color, size). Illusions 
and failures of constancy are seen as obstacles to discovering this correspondence. Color 
has been seen as particularly puzzling because the relationship between physical param-
eters is not related in an obvious way to perceptual dimensions. Taking priors, likelihood 
functions, and cost functions seriously means rethinking the notion that there exists a 
direct correspondence between some parameters that span a physical space (e.g., reflect-
ance of an object) and some parameters that span a perceptual space (e.g., perceived 
color). Under this view, the visual system does not care about getting things right, per se. 
It cares about getting things right enough to survive. Veridicality is important in the envi-
ronments in which veridicality would have been essential for an organism’s survival. 
Thus, the correspondence between physical properties of objects in the world and per-
ception of those properties ought to be mediated both by the probability with which the 
properties occurred and the costs of getting those properties wrong. 

 It may seem troubling to abandon the notion of direct correspondence between 
the properties of objects and the properties of perception; after all, if object properties 
do not uniquely determine perceptual properties, and perceptual properties of a 
given object vary from scene to scene and from observer to observer, then deriving a 
principled account of perceptual properties may seem impossible. The appeal of the 
Bayesian approach is that it provides an empirical account of perception in a wide variety 
of circumstances that does not rely on hand-waving. Failures of constancy and visual 
illusions can be given a unified explanation and do not require an ecumenical approach 
to perception. 
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1  Second, if one accepts the Bayesian formulation that the optimal interpretation of a set 
of data (perception) is shaped by prior probabilities as well as the data themselves, then 
the set of properties it is possible to perceive veridically is constrained. There are states of 
the world that a Bayesian algorithm would predict will never be perceived veridically 
because they are considered too unlikely. For example, in the model of color constancy, 
some of the variability in constancy is explained by the degree to which the actual state of 
the world is an improbable state of the world (according to the prior). In the Bayesian 
formulation, because purple illumination is very unlikely, surfaces illuminated by purple 
light will be perceived as more purple than they actually are. 

 A third related point is that the Bayesian framework provides an empirically parsimo-
nious and philosophically appealing account of both visual illusions (Geisler and Kersten 
  2002  ) and variability in constancy (Brainard et al.   2006  ). One model containing one set 
of priors can predict both illusions and veridical perception; there is no need to think of 
illusions as errors or puzzles in a philosophical sense. Others have noted the importance 
of errors in understanding the human visual system (Brainard et al.   2006  ; Geisler and 
Kersten   2002  ; Gilchrist   2006  ). As Geisler and Kersten (  2002  , 508) noted when describing 
one Bayesian model, “These perceptual errors seem to reveal a rational (but automatic) 
perceptual system designed to correctly interpret the retinal images evoked by the world.” 
Thus, visual illusions and variability in constancy can be thought of as the output of a 
rational visual system rather than as epiphenomena of some strange kind. 

 The Bayesian approach suggests one possible way to frame the discussion of multiple 
judgments, although there is not yet empirical data to support this idea. The Bayesian 
approach suggests that to make an estimate of what object is in the world given the sen-
sory signal, we combine the likelihood, the prior, and the cost function to determine what 
object was most probable. But what if the expected Bayes’ utility is multimodal; that is, 
what if two objects are both equally likely (or relatively so)? 

 Perhaps multiple judgments are possible only when the expected Bayes’ utility is mul-
timodal. This multimodality could arise for at least two reasons: (1) The utility/cost func-
tion could push you in one direction while the posterior pushed you in another. This is 
akin to saying that the visual system estimates that a surface is white, but an experimenter 
has said you will win a million dollars if you correctly identify a dark surface, and you will 
lose 10 cents if you misidentify a white surface. (2) The posterior itself could be multi-
modal. This could happen if the likelihood pushes estimates in one direction while the 
prior pushes estimates in another direction. An example of this could be when a purple 
surface is presented under purple illumination. Depending on the formulation, the likeli-
hood could be high for states of the world that include purple illumination, but the prior 
could be very low for those states. Thus, the posterior could have high probabilities for 
both purple illumination and also for daylight illumination. 

 I speculate that if the expected Bayes’ utility is not multimodal, then only one judgment 
is possible. Furthermore, I speculate that when expected Bayes’ utility is multimodal, two 
judgments are possible, and the different causes of multimodality implicate different 
kinds of judgments. When the multimodality occurs in the posterior, then both judg-
ments are perceptual or apparent. That is, the book is experienced as being both white 
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1 and not-white. Alternatively, when multimodality arises from differential pulls between 
the cost function and the posterior, I propose that one judgment is perceptual (the left 
half of the book is darker) and the other is cognitive (but I know it must be painted the 
same as the right half of the book). 

 These ideas are entirely speculative; designing a Bayesian algorithm that is simple 
enough to generate this kind of multimodality but rich enough to suggest interesting 
psychophysical experiments is not a trivial endeavor, but one that could provide worth-
while empirical predictions. 

 In summary, any account of visual perception must solve the computational and philo-
sophical puzzles of sensory ambiguity. There are multiple ways to do so. Bayesian 
approaches, while not perfect, provide an intuitive, generalizable, and philosophically 
interesting solution to the problems of sensory ambiguity.      
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   Plate 11    (see also Fig. 11.2) Examples of four stimulus configurations viewed by human 
observers in Delahunt and Brainard (  2004  ). Subjects adjusted a test patch at the location 
indicated by the black square until it appeared achromatic. (Reproduced from Brainard, 
David H., David R. Williams, and Heidi Hofer, Trichromatic reconstruction from the interleaved 
cone mosaic: Bayesian model and the color appearance of small spots, Journal of Vision 8(5): 
pp. 11–23 © 2008 Association for Research in Vision and Ophthalmology, with permission.)    

   Plate 12    (see also Fig. 11.3) Illustration of a small part of the photoreceptor mosaic for five 
subjects. Retinas were imaged using adaptive optics techniques described in Hofer et al. 
(  2005a  ). (Reproduced from Brainard, David H., David R. Williams, and Heidi Hofer, Trichromatic 
reconstruction from the interleaved cone mosaic: Bayesian model and the color appearance of 
small spots, Journal of Vision 8(5): pp. 11–23 © 2008 Association for Research in Vision and 
Ophthalmology, with permission.)    
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     Plate 10    (see also Fig. 11.1) Illustration of sensory ambiguity. (© Maria Olkkonen, 2011, 
reproduced here with permission.)    
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   Plate 13    (see also Fig. 11.4) Actual (left) and predicted (right) color names for presentation 
of 550-nm spots. The observers’ task was to report the color of each spot they judged 
nameable. The histogram shows the proportion of total presentations named the illustrated 
color. (Reproduced from Brainard, David H., David R. Williams, and Heidi Hofer, Trichromatic 
reconstruction from the interleaved cone mosaic: Bayesian model and the color appearance of 
small spots, Journal of Vision 8(5): pp. 11–23 © 2008 Association for Research in Vision and 
Ophthalmology, with permission.)    
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